解 (1) 由平面 查看更多

 

题目列表(包括答案和解析)

由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形的层数增加可得到这四个数列的后继项.按图中多边形的边数依次称这些数列为“三角形数列”、“四边形数列”,将构图边数增加到可得到“边形数列”,记它的第项为

  

   1,3,6,10        1,4,9,16          1,5,12,22         1,6,15,28

(1)       求使得的最小的取值;

(2)       试推导关于的解析式;

 ( 3)  是否存在这样的“边形数列”,它的任意连续两项的和均为完全平方数,若存在,指出所有满足条件的数列并证明你的结论;若不存在,请说明理由.

 

查看答案和解析>>

由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形的层数增加可得到这四个数列的后继项.按图中多边形的边数依次称这些数列为“三角形数列”、“四边形数列”,将构图边数增加到可得到“边形数列”,记它的第项为

1,3,6,10        1,4,9,16          1,5,12,22         1,6,15,28
(1)      求使得的最小的取值;
(2)      试推导关于的解析式;
( 3) 是否存在这样的“边形数列”,它的任意连续两项的和均为完全平方数,若存在,指出所有满足条件的数列并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系中,曲线的参数方程为

   是曲线上的动点.

  (1)求线段的中点的轨迹的直角坐标方程;

  (2) 以坐标原点为极点,轴的正半轴为极轴建立极坐标系,若直线的极坐标方程为,求点到直线距离的最大值.

【解析】第一问利用设曲线上动点,由中点坐标公式可得

所以点的轨迹的参数方程为

消参可得

第二问,由题可知直线的直角坐标方程为,因为原点到直线的距离为

所以点到直线的最大距离为

 

查看答案和解析>>

某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1800元,面粉的保管等其它费用为平均每吨每天3元,购面粉每次支付运费900元.

(1)求该厂多少天购买一次面粉,才能使每天支付的总费用最少?

(2)若提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠(即原价的90%)问该厂是否考虑利用此优惠条件?请说明理由.

查看答案和解析>>

设平面向量(其中),且

(1)求函数y=f(x)的表达式;

(2)若函数y=f(x)对任意都有(x1-x2)[f(x1)-f(x2)]>0,求此时在[1,+∞]上的最小值;

(3)若点(x0,f(x0))在不等式所表示的区域内,且x0为方程的一个解,当k<4时,请判断x0是否为方程f(x)=x的根,并说明理由.

查看答案和解析>>


同步练习册答案