(I)求证:平面, 查看更多

 

题目列表(包括答案和解析)


(I)求异面直线MN和CD1所成的角;
(II)证明:EF//平面B1CD1.

查看答案和解析>>

在平面直角坐标系xOy中,以O为极点,X轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为:为参数);射线C2的极坐标方程为:,且射线C2与曲线C1的交点的横坐标为

(I )求曲线C1的普通方程;

(II)设A、B为曲线C1与y轴的两个交点,M为曲线C1上不同于A、B的任意一点,若直线AM与MB分别与x轴交于P,Q两点,求证|OP|.|OQ|为定值.

 

查看答案和解析>>

在平面直角坐标系xOy中,以O为极点,X轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为:为参数);射线C2的极坐标方程为:,且射线C2与曲线C1的交点的横坐标为
(I )求曲线C1的普通方程;
(II)设A、B为曲线C1与y轴的两个交点,M为曲线C1上不同于A、B的任意一点,若直线AM与MB分别与x轴交于P,Q两点,求证|OP|.|OQ|为定值.

查看答案和解析>>

在复平面内, 是原点,向量对应的复数是=2+i。

(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数

(Ⅱ)复数对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。

【解析】第一问中利用复数的概念可知得到由题意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二问中,由题意得,=(2,1)  ∴

同理,所以A、B、C、D四点到原点O的距离相等,

∴A、B、C、D四点在以O为圆心,为半径的圆上

(Ⅰ)由题意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四点在同一个圆上。                              2分

证明:由题意得,=(2,1)  ∴

  同理,所以A、B、C、D四点到原点O的距离相等,

∴A、B、C、D四点在以O为圆心,为半径的圆上

 

查看答案和解析>>






分别为的中点。
(I)求证:平面
(Ⅱ)求三棱锥的体积;
(Ⅲ)求平面与平面所成的锐二面角大小的余弦值。

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

    1.C    2.C    3.C    4.C    5.A    6.D    7.A    8.A    9.B   

10.D   11.A   12.B

二、填空题:本大题4共小题,每小题5分。

   13.    14.    15.     16.①④

三、解答题(解答应写出文字说明,证明过程或演算步骤)

 

17.(I)

由余弦定理得

整理得得

,故为直角三角形

(Ⅱ)设内角对边的边长分别是

外接圆半径为1,

周长的取值范围

18.(I)证明:

(Ⅱ)解:设A

设点到平面的距离为

(Ⅲ解:设轴建立空间直角坐标宿,为计算方便,不妨设

要使二面角的大小为120°,则

即当时,二面角的大小为120°

19.(I)记“厂家任意取出4件产品检验,其中至少有一件是合格品“为事件A,

(Ⅱ)的可能取值为0,1,2,

所以的概率分布为

 

 

0

1

2

 

 

 

 

 

 

20.(I)设

(Ⅱ)曲线向左平移1一个单位,得到曲线的方程为

(1)当

(2)当

(Ⅲ)

21.(I)

(Ⅱ)令

(Ⅲ)用数学归纳法证明

请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分,做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑。

 

22.

23.(I)为参数,为倾斜角,且

(Ⅱ)

24.

   

 


同步练习册答案