(Ⅲ)当的值为多少时.二面角的大小为120°? 查看更多

 

题目列表(包括答案和解析)

在四棱锥中,,,底面, ,直线与底面角,点分别是的中点.

(1)求二面角的大小;

(2)当的值为多少时,为直角三角形.

查看答案和解析>>

在四棱锥中,,,底面, ,直线与底面角,点分别是的中点.

(1)求二面角的大小;

(2)当的值为多少时,为直角三角形.

查看答案和解析>>

在四棱锥中,,,底面, ,直线与底面角,点分别是的中点.

(1)求二面角的大小;

(2)当的值为多少时,为直角三角形.

查看答案和解析>>

 

    (理)如图,平面ADEF⊥平面ABCD,ABCD与ADEF均为矩形,且AB:AD:AF=

 
2:2:;P为线段EF上一点,M为AB的中点,若PC与BD所成的角为

60°.

   (1)试确定P点位置;

   (2)求二面角P—MC—D的大小的余弦值;

   (3)当AB长为多少时,点D到平面PMC的距离等于

 

 

 

 

(文)设函数),其中

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,求函数的极大值和极小值;

(Ⅲ)当时,证明存在,使得不等式对任意的恒成立.

 

 

 

 

 

 

 

查看答案和解析>>

在四棱锥中,,,底面, ,直线与底面角,点分别是的中点.
(1)求二面角的大小;
(2)当的值为多少时,为直角三角形.

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

    1.C    2.C    3.C    4.C    5.A    6.D    7.A    8.A    9.B   

10.D   11.A   12.B

二、填空题:本大题4共小题,每小题5分。

   13.    14.    15.     16.①④

三、解答题(解答应写出文字说明,证明过程或演算步骤)

 

17.(I)

由余弦定理得

整理得得

,故为直角三角形

(Ⅱ)设内角对边的边长分别是

外接圆半径为1,

周长的取值范围

18.(I)证明:

(Ⅱ)解:设A

设点到平面的距离为

(Ⅲ解:设轴建立空间直角坐标宿,为计算方便,不妨设

要使二面角的大小为120°,则

即当时,二面角的大小为120°

19.(I)记“厂家任意取出4件产品检验,其中至少有一件是合格品“为事件A,

(Ⅱ)的可能取值为0,1,2,

所以的概率分布为

 

 

0

1

2

 

 

 

 

 

 

20.(I)设

(Ⅱ)曲线向左平移1一个单位,得到曲线的方程为

(1)当

(2)当

(Ⅲ)

21.(I)

(Ⅱ)令

(Ⅲ)用数学归纳法证明

请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分,做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑。

 

22.

23.(I)为参数,为倾斜角,且

(Ⅱ)

24.

   

 


同步练习册答案