题目列表(包括答案和解析)
已知
.
(Ⅰ)求
的最小正周期;
(Ⅱ)当
为何值时,
取得最大值,最大值是多少?
(Ⅲ)求
的单调递减区间.
最小正周期为π的函数
(其中a是小于零的常数,
是大于零的常数)的图象按向量
,(0<θ<π)平移后得到函数y=f(x)的图象,而函数y=f(x)在实数集上的值域为[-2,2],且在区间
上是单调递减函数.
(1)求a、
和θ的值;
(2)若角α和β的终边不共线,f(α)+g(α)=f(β)+g(β),求tan(α+β)的值.
函数
的最小正周期为
,
(Ⅰ)求
的单调递增区间;
(Ⅱ)在
中,角A,B,C的对边分别是
,且满足
,
求角B的值,并求函数
的取值范围.
一、选择题(5分×12=60分)
B B D D C B B D D C A A
二、填空题(4分x 4=16分)
13.80 14.32 15.
16.①③
三、解答题(12分×5+14分=74分)
17.解:(1)
2分
……………………4分
∴
的最小正周期为
…………………6分
(2)∵
成等比数列 ∴
又
∴
……………………………………4分
又∵
∴
……………………………………………………10分
……………………………………12分
18.解:(1)设
公差
由
成等比数列得
…………………1分
∴即
∴
舍去或
…………………………3分
∴
………………………………………………4分
∴
………………………………………………6分
(2) ∵
………………………………………………7分
∴
…①
…………8分
…………②
…………9分
①-②得:

∴
………………………………………………12分
19.解:(1)记“任取2张卡片,将卡片上的函数相加得到偶函数”为事件A,
……………………………………………………4分
(2)设符合题设条件,抽取次数恰为3的事件记为B,则
………………………………………………12分
20.解:(1)连结
为正△
…1分



面
3分
面
面

即点
的位置在线段
的四等分点且靠近
处 ………………………………………6分
(2)过
作
于
,连
由(1)知
面
(三垂线定理)
∴
为二面角
的平面角……9分


在
中,
在
中,
∴二面角
的大小为
………………………………………12分
(说明:若用空间向量解,请参照给分)
21.解:(1)
由
得
……2分
①当
时,
在
内是增函数,故无最小值………………………3分
②当
时,
在
处取得极小值
………………………5分

由
解得:
≤
∴
≤
…………6分
≥
(2)由(1)知
在区间
上均为增函数
又
,故要在
内
为增函数

≤
≥
必须: 或 ………………………………………10分
≤
≤
∴
≤
或
≥
∴实数
的取值范围是:
…………………12分
22.解:(1)如图,设
为椭圆的下焦点,连结
∴
∵
∴
…3分
∵
∴
………4分
∴
的离心率为
…………………………………………………………6分
(2)∵
,∴抛物线方程为:
设点
则
∵
∴
点处抛物线
的切线斜率
……………………………………………………8分
则切线
方程为:
……………………………………………………9分
又∵过点
∴
∴
∴
代入椭圆
方程得:
……………………………………………………11分
∴
≥
………………13分


当且仅当 即 上式取等号

∴此时椭圆的方程为:
………………………………………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com