题目列表(包括答案和解析)
若抛物线
的焦点是
,准线是
,则经过点
、
(4,4)且与
相切的圆共有
A.
个 B.
个
C.
个
D.
个
第Ⅱ卷
已知
均为正数,
,则
的最小值是 ( )
A.
B.
C.
D.![]()
第Ⅱ卷 (非选择题 共90分)
二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上。
给出定义:若
(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m在此基础上给出下列关于函数
的四个命题:
①
②![]()
③
④
的定义域为R,值域是![]()
则其中真命题的序号是 ( )
A.①② B.①③ C.②④ D.③④
第Ⅱ卷
下列四个函数图象,只有一个是符合
(其中
,
,
为正实数,
为非零实数)的图象,则根据你所判断的图象,
之间一定成立的关系是( )
A.
B.
C.
D.![]()
第Ⅱ卷
在等差数列
中,若
,则
的值为( )
A. 6 B. 8 C. 10 D. 16
第Ⅱ卷 (非选择题 共100分)
一、选择题(每小题5分,共60分)
BDACC ACDDB AA
二、填空题(每小题4分,共16分)
13.
; 14.
15.―192 16.
三、解答题(共74分)
17.解:(I)由正弦定理
,有
代入
得
即



(Ⅱ)
由
得
所以,当
时,
取得最小值为0
18.解:(I)由已知得
故
即
故数列
为等比数列,且
由当
时,
所以
(Ⅱ)
所以


19.解:(I)从50名教师随机选出2名的方法为
=1225,选出2人使用教材版本相同的方法数
故2人使用版本相同的概率为
。
(Ⅱ)
的分布为

0
1
2





20.解(I)由该四棱锥的三视图可知,该四棱锥
的底面是边长为1的正方形,
侧棱
底面
,且
,
(Ⅱ)不论点E在何位置,都有
证明:连结
是正方形,
底面
,且
平面
,

又
平面
不论点
在何位置,都有
平面
不论点E在何位置,都有
。
(Ⅲ)以
为坐标原点,
所在的直线为
轴建立空间直角坐标系如图:
则
从而


设平面
和平面
的法向量分别为
,
由法向量的性质可得:

令
则

设二面角
的平面角为
,则

二面角
的大小为
。
21.解:(1)由题意可知直线
的方程为
,
因为直线与圆
相切,所以
,即
从而
(2)设
,则
,
又
(
①当
时,
,解得
,
此时椭圆方程为
②当
时,
,解得
,
当
,故舍去
综上所述,椭圆的方程为
22.解:(I)依题意,知
的定义域为(0,+
)
当
时,
令
,解得
。
当
时,
;当
时,
又
所以
的极小值为2-2
,无极大值。
(Ⅱ)
;
令
,解得
。
(1)若
令
,得
令
,得
(2)若
,
①当
时,
,
令
,得
或
;
令
,得
②当
时,
③当
时,得
,
令
,得
或
令
,得
综上所述,当
时,
的递减区间为
,递增区间为
当
时,
的递减区间为
;递增区间为
当
时,
递减区间为
当
时,
的递减区间为
,递增区间为
(Ⅲ)当
时,
,
由
,知
时,

依题意得:
对一切正整数成立
令
,则
(当且仅当
时取等号)
又
在区间
单调递增,得
,
故
又
为正整数,得
当
时,存在
,对所有
满足条件。
所以,正整数
的最大值为32。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com