(Ⅲ)设函数..是否存在正整数.使对都成立?若存在.求出的值,若不存在.请说明理由. 惠州市2009届高三模拟考试数学试题评分标准题号12345678910答案DABAADDAAB 查看更多

 

题目列表(包括答案和解析)

设函数,对于正数数列,其前项和为,且.

(1)求数列的通项公式;

(2)是否存在等比数列,使得对一切正整数都成立?若存在,请求出数列的通项公式;若不存在,请说明理由.

查看答案和解析>>

设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R上的奇函数.
(1)求k的值,并证明当a>1时,函数f(x)是R上的增函数;
(2)已知f(1)=
3
2
,函数g(x)=a2x+a-2x-4f(x),x∈[1,2],求g(x)的值域;
(3)若a=4,试问是否存在正整数λ,使得f(2x)≥λ•f(x)对x∈[-
1
2
1
2
]
恒成立?若存在,请求出所有的正整数λ;若不存在,请说明理由.

查看答案和解析>>

设函数f(x)是定义在x∈[-1,1]上的偶函数,函数g(x)的图象与f(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3
①求f(x)的解析式;
②是否存在正整数a,使f(x)的最大值为12?若存在求出a的值,若不存在说明理由.

查看答案和解析>>

设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R上的奇函数.
(1)求k的值,并证明当a>1时,函数f(x)是R上的增函数;
(2)已知数学公式,函数g(x)=a2x+a-2x-4f(x),x∈[1,2],求g(x)的值域;
(3)若a=4,试问是否存在正整数λ,使得f(2x)≥λ•f(x)对数学公式恒成立?若存在,请求出所有的正整数λ;若不存在,请说明理由.

查看答案和解析>>

设函数f(x)是定义在x∈[-1,1]上的偶函数,函数g(x)的图象与f(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3
①求f(x)的解析式;
②是否存在正整数a,使f(x)的最大值为12?若存在求出a的值,若不存在说明理由.

查看答案和解析>>


同步练习册答案