题目列表(包括答案和解析)
已知
,
,
分别为
三个内角
,
,
的对边,
.
(Ⅰ)求
;
(Ⅱ)若
=2,
的面积为
,求
,
.
【命题意图】本题主要考查正余弦定理应用,是简单题.
【解析】(Ⅰ)由
及正弦定理得
![]()
由于
,所以
,
又
,故
.
(Ⅱ)
的面积
=
=
,故
=4,
而
故
=8,解得
=2
已知
中,
,
.设
,记
.
(1) 求
的解析式及定义域;
(2)设
,是否存在实数
,使函数
的值域为
?若存在,求出
的值;若不存在,请说明理由.
【解析】第一问利用(1)如图,在
中,由
,,
可得
,
又AC=2,故由正弦定理得
(2)中
由
可得![]()
![]()
.显然,
,则
1
当m>0的值域为![]()
m+1=3/2,n=1/2
2
当m<0,不满足
的值域为
;
因而存在实数m=1/2
的值域为
.
在△ABC中,
为三个内角
为三条边,
且![]()
(I)判断△ABC的形状;
(II)若
,求
的取值范围.
【解析】本题主要考查正余弦定理及向量运算
第一问利用正弦定理可知,边化为角得到![]()
![]()
所以得到B=2C,然后利用内角和定理得到三角形的形状。
第二问中,
![]()
得到。
(1)解:由
及正弦定理有:![]()
∴B=2C,或B+2C
,若B=2C,且
,∴
,
;∴B+2C
,则A=C,∴
是等腰三角形。
(2)
![]()
已知向量
=(
),
=(
,![]()
),其中(
).函数
,其图象的一条对称轴为
.
(I)求函数
的表达式及单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若
=1,b=l,S△ABC=
,求a的值.
【解析】第一问利用向量的数量积公式表示出![]()
,然后利用
得到
,从而得打解析式。第二问中,利用第一问的结论,表示出A,结合正弦面积公式和余弦定理求解a的值。
解:因为
![]()
由余弦定理得
,……11分故![]()
在△ABC中,角A、B、C的对边分别为a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),满足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二问中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-
=3,得k=
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com