如图11.已知:在△ABC中.∠BAC=90°.延长BA到点D.使AD=AB.点G.E.F分别为边AB.BC.AC的中点.求证:DF=BE. 查看更多

 

题目列表(包括答案和解析)

(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点ABD⊥直线m, CE⊥直线m,垂足分别为点DE.证明:DE=BD+CE.

(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=ACDAE三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3) 拓展与应用:如图(3),DEDAE三点所在直线m上的两动点(DAE三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BDCE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

 


查看答案和解析>>

(10分) 如图9,已知,在△ABC中,∠ABC=,BC为⊙O的直径, AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.

(1)求证:ED是⊙O的切线.
(2)如果CF ="1,CP" =2,sinA =,求⊙O的直径BC.

查看答案和解析>>

(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

 

查看答案和解析>>

(10分) 如图9,已知,在△ABC中,∠ABC=,BC为⊙O的直径, AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.

(1)求证:ED是⊙O的切线.
(2)如果CF ="1,CP" =2,sinA =,求⊙O的直径BC.

查看答案和解析>>

如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使,点G、E、F分别为边AB、BC、AC的中点.求证:DF=BE。

查看答案和解析>>


同步练习册答案