①x2=0 ②ax2+bx+c=0 ③x2-3=x ④a2+a-x=0 ⑤(m-1)x2+4x+=0 ⑥+= ⑦=2 ⑧(x+1)2=x2-9A.2个 B.3个 C.4个 D.5个 查看更多

 

题目列表(包括答案和解析)

精英家教网如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标为x1、x2,其中-2<x1<-1、0<x2<1.下列结论:①4a-2b+c<0,②2a-b<0,③a<-1,④b2+8a>4ac中,正确的结论是
 

查看答案和解析>>

如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1,x2,其中-2<x1<-1,0<x2<1,下列结论:
①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.
其中正确的个数有
①②③④
①②③④

提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-
b
2a
,顶点坐标是(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

请阅读下面材料:
若A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,证明直线x=
x1+x2
2
为此抛物线的对称轴.
有一种方法证明如下:
①②
证明:∵A(x1,y0),B(x2,y0) 是抛物线y=ax2+bx+c(a≠0)上不同的两点
y0=a
x
2
1
+bx1+c①
y0=a
x
2
2
+bx2+c②
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
x1+x2=-
b
a

又∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=-
b
2a

∴直线x=
x1+x2
2
为此抛物线的对称轴.
(1)反之,如果M(x1,y1),N(x2,y2) 是抛物线y=ax2+bx+c(a≠0)上不同的两点,直线x=
x1+x2
2
为该抛物线的对称轴,那么自变量取x1,x2时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;
(2)利用以上结论解答下面问题:
已知二次函数y=x2+bx-1当x=4时的函数值与x=2007时的函数值相等,求x=2012时的函数值.

查看答案和解析>>

下列方程中,关于x的一元二次方程的是(  )
A、ax2+bx+c=0
B、3(x-1)2=2(x+1)
C、
1
x2
+
1
x
-2=0
D、x2+3x=x2-1

查看答案和解析>>

在下列方程中,一定是一元二次方程的是(  )

查看答案和解析>>


同步练习册答案