题目列表(包括答案和解析)
(本小题满分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.
(1)求x2的系数的最小值;
(2)当x2的系数取得最小值时,求f (x)展开式中x的奇次幂项的系数之和.
解: (1)由已知
+2
=11,∴m+2n=11,x2的系数为
+22
=
+2n(n-1)=
+(11-m)(
-1)=(m-
)2+
.
∵m∈N*,∴m=5时,x2的系数取最小值22,此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.设这时f (x)的展开式为f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+
33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
两式相减得2(a1+a3+a5)=60, 故展开式中x的奇次幂项的系数之和为30.
(本小题满分12分)设函数
,曲线
在点M
处的切线方程为
.
(Ⅰ)求
的解析式;
(Ⅱ)求函数
的单调递减区间;
(Ⅲ)证明:曲线
上任一点处的切线与直线
和直线
所围成的三角形面积为定值,并求此定值.
(本题满分12分)
为考察某种甲型H1N1疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:
|
|
感染 |
未感染 |
总计 |
|
没服用 |
20 |
30 |
50 |
|
服用 |
x |
y |
50 |
|
总计 |
M |
N |
100 |
设从没服用疫苗的动物中任取两只,感染数为
从服从过疫苗的动物中任取两只,感染数为
工作人员曾计算过![]()
(1)求出列联表中数据
的值;
(2)写出
的均值(不要求计算过程),并比较大小,请解释所得出的结论的实际意义;
(3)能够以97.5%的把握认为这种甲型H1N1疫苗有效么?并说明理由。
参考公式:![]()
参考数据:
|
|
0.05 |
0.025 |
0.010 |
|
|
3.841 |
5.024 |
6.635 |
(本小题满分12分)
设对于任意实数
,不等式
≥m恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于
的不等式:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com