小明同学取=4.则方程是. 查看更多

 

题目列表(包括答案和解析)

七(1)班同学上数学活动课,他们对一个角的平分线作如下研究(如图).他们先用角尺做了平分这个角的方案设计:
(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,若移动角尺使角尺两边相同刻度的点与M、N重合,即PM=PN,则过角尺顶点P的射线OP就是∠AOB的平分线.
(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,若将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同刻度的点与M、N重合,即PM=PN,则过角尺顶点P的射线OP就是∠AOB的平分线.
(1)方案(Ⅰ)是否可行?答:
不行
不行
(填“行”或“不行”);
(2)方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.
(3)在活动过程中,小明说:“若设∠AOB=60°,自O点引射线OC,若∠AOC:∠COB=1:3,那么射线OC与∠AOB的平分线所成角的度数是多少呢?”请你通过求解告诉小明.

查看答案和解析>>

七(1)班同学上数学活动课,他们对一个角的平分线作如下研究(如图).他们先用角尺做了平分这个角的方案设计:
(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,若移动角尺使角尺两边相同刻度的点与M、N重合,即PM=PN,则过角尺顶点P的射线OP就是∠AOB的平分线.
(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,若将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同刻度的点与M、N重合,即PM=PN,则过角尺顶点P的射线OP就是∠AOB的平分线.
(1)方案(Ⅰ)是否可行?答:______(填“行”或“不行”);
(2)方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.
(3)在活动过程中,小明说:“若设∠AOB=60°,自O点引射线OC,若∠AOC:∠COB=1:3,那么射线OC与∠AOB的平分线所成角的度数是多少呢?”请你通过求解告诉小明.

查看答案和解析>>

王老师在黑板上出了这样一道习题:设方程2x2-5x+k=0的两个实数根是x1,x2,请你选取一个适当的k值,求数学公式的值.
小明同学取k=4,则方程是2x2-5x+4=0.
由根与系数的关系,得x1+x2=数学公式,x1x2=2.
数学公式
数学公式
问题(1):请你对小明解答的正误作出判断,并说明理由.
问题(2):请你另取一个适当的正整数k,其它条件不变,不解方程,改求|x1-x2|的值.

查看答案和解析>>

早晨小欣与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班.妈妈骑车走了一会接到小欣的电话,即以原速骑车前往小欣学校,并与小欣同时到达学校.他们离家的路程y (米)与时精英家教网间x (分)的函数图象如图所示.已知A点坐标A(10,-2500),C(20,0)C点坐标为(20,0).
(1)在图中,小明离家的路程y (米)与时间x (分)的函数图象是线段;
A、OA     B、OB      C、OC      D、AB
(2)分别求出线段OA与AB的函数表达式(不需要写出自变量的取值范围);
(3)已知小欣步行速度为每分50米,则小欣家与学校距离为多少米,小欣早晨上学需要多少分钟?

查看答案和解析>>

早晨小欣与妈妈同时从家里出发,步行与骑自行车到方向相反的两地上学与上班.妈妈骑车走了一会接到小欣的电话,即以原速骑车前往小欣学校,并与小欣同时到达学校.他们离家的路程y (米)与时间x (分)的函数图象如图所示.已知A点坐标A(10,-2500),C(20,0)C点坐标为(20,0).
(1)在图中,小明离家的路程y (米)与时间x (分)的函数图象是线段;
A、OA  B、OB   C、OC   D、AB
(2)分别求出线段OA与AB的函数表达式(不需要写出自变量的取值范围);
(3)已知小欣步行速度为每分50米,则小欣家与学校距离为多少米,小欣早晨上学需要多少分钟?

查看答案和解析>>


同步练习册答案