由根与系数的关系.得:. . 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系中,以M(1,0)为圆心,2为半径作⊙M与x轴交于A、B两点(A在B的左侧),与y轴正半轴交于点G,点B与点N关于y轴对称,连接NG与GM.
(1)抛物线经过点B,求此抛物线函数解析式;
(2)求证:NG是⊙M的切线;
(3)该抛物线上是否存在这样的动点P,过P作PF垂直x轴于F,使得△PNF与△GOM相似?若存在,求出动点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)

查看答案和解析>>

如图,在平面直角坐标系中,以M(1,0)为圆心,2为半径作⊙M与x轴交于A、B两点(A在B的左侧),与y轴正半轴交于点G,点B与点N关于y轴对称,连接NG与GM.
(1)抛物线经过点B,求此抛物线函数解析式;
(2)求证:NG是⊙M的切线;
(3)该抛物线上是否存在这样的动点P,过P作PF垂直x轴于F,使得△PNF与△GOM相似?若存在,求出动点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)

查看答案和解析>>

如图,为⊙的直径,于点

(1)求证:

(2)求的长;

(3)延长,使得,连接,试判断直 线与⊙的位置关系,并说明理由.

【解析】(1)根据AB=AC,可得∠ABC=∠C,利用等量代换可得∠ABC=∠D然后即可证明△ABE∽△ADB.

(2)根据△ABE∽△ADB,利用其对应边成比例,将已知数值代入即可求得AB的长.

(3)连接OA,根据BD为⊙O的直径可得∠BAD=90°,利用勾股定理求得BD,然后再求证∠OAF=90°即可

 

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.在数学课上,老师给出这样一道题:
我们知道:2+2=2×2,3+
3
2
=3×
3
2
,4+
4
3
=4×
4
3
,…
请你根据上面的材料归纳出a、b(a>1,b>1)一个数学关系式.
我们由此得出的结论为:设其中一个数为a,另一个数为b,则b=
a
a-1

在数学课上小刚同学又发现了一个新的结论是:
a
b
+
b
a
+2=ab

你认为小刚的结论正确吗?请说明理由.

查看答案和解析>>

阅读材料:
当抛物线的关系式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化。
例如:由抛物线y=x2-2mx+m2+2m-1,①
有y=(x-m)2+2m-1②
∴抛物线的顶点坐标为(m,2m-1),即
当m的值变化时,x、y的值也随之变化,因而y值也随x值的变化而变化,将③代入④,得y=2x-1⑤,可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式y=2x-1,
解答问题:
(1)在上述过程中,由①到②所用的数学方法是____,其中运用了____公式;由③④得到⑤所用的数学方法是____;
(2)根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-3m+1顶点的纵坐标y与横坐标x之间的关系式____。

查看答案和解析>>


同步练习册答案