题目列表(包括答案和解析)
(本题12分) 如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,
,
,B点坐标为(4,0).点
是边
上一点,且
.点
、
分别从
、
同时出发,以1厘米/秒的速度分别沿
、
向点
运动(当点F运动到点B时,点E随之停止运动),EM、CD的延长线交于点P,FP交AD于点Q.⊙E半径为
,设运动时间为
秒。
(1)求直线BC的解析式。
(2)当
为何值时,
?
(3)在(2)问条件下,⊙E与直线PF是否相切;如果相切,加以证明,并求出切点的坐标。如果不相切,说明理由。
(本题12分)在梯形ABCD中,AB∥CD,∠BCD=90,且AB=1,BC=2,tan∠ADC=2;对角线相交于O点,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。
(1)当三角板旋转到图1的位置时,猜想DE与BF的数量关系,并加以证明。
(2)在(1)问条件下,若BE:CE=1:2,∠BEC=135°,求sin∠BFE的值。
(3)当三角板的一边CF与梯形对角线AC重合时,作DH⊥PE于H,如图2,若OF=
时,求PE及DH的长。
(本题满分12分)
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。
1.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
2.(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断
是否为定值.若是.请求出该定值;若不是.请说明理由。
![]()
(本题10分)如图,在梯形ABCD中,AD//BC,E是BC的中点,AD=5 cm,BC=12 cm,CD=
cm,∠C=45°,点P从B点出发,沿着BC方向以1cm/s运动,到达点C停止,设P运动了ts。
1.(1)当t为何值时以点P、A、D、E为顶点的四边形为直角梯形;(4分)
2.(2)当t为何值时以点P、A、D、E为顶点的四边形为平行四边形;(4分)
3.(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?如能,请求出t值,如不能请说明理由。(2分)
![]()
(本题满分10分)已知a、b满足![]()
1.(1)求a、b的值;
2.(2)求二次函数
图象与x轴交点坐标;
3.(3)写出(2)中,当y>0时,x的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com