(1)求点的坐标,(2)求该抛物线的函数表达式, 查看更多

 

题目列表(包括答案和解析)

24、抛物线与坐标轴交点如图所示,一次函数y=k(x-2)的图象与该抛物线相切(即只有一个交点).
(1)该一次函数y=k(x-2)图象所经过的定点的坐标为
(2,0)

(2)求该抛物线所表示的二次函数的表达式;
(3)求该一次函数的表达式.

查看答案和解析>>

抛物线与坐标轴交点如图所示,一次函数y=k(x-2)的图像与该抛物线相切(即只有一个交点)。又该抛物线与y轴交于点(0,-2)
(1)该一次函数y=k(x-2)图像所经过的定点的坐标为(    );
(2)求该抛物线所表示的二次函数的表达式;
(3)求该一次函数的表达式。

查看答案和解析>>

已知抛物线y=kx2+(k-2)x-2(其中k>0).
(1)求该抛物线与x轴的交点及顶点的坐标(可以用含k的代数式表示);
(2)若记该抛物线顶点的坐标为P(m,n),直接写出|n|的最小值;
(3)将该抛物线先向右平移数学公式个单位长度,再向上平移数学公式个单位长度,随着k的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).

查看答案和解析>>

已知抛物线y=ax2+2x+3(a≠0)有如下两个特点:①无论实数a怎样变化,其顶点都在某一条直线l上;②若把顶点的横坐标减少数学公式,纵坐标增大数学公式分别作为点A的横、纵坐标;把顶点的横坐标增加数学公式,纵坐标增加数学公式分别作为点B的横、纵坐标,则A,B两点也在抛物线y=ax2+2x+3(a≠0)上.
(1)求出当实数a变化时,抛物线y=ax2+2x+3(a≠0)的顶点所在直线l的解析式;
(2)请找出在直线l上但不是该抛物线顶点的所有点,并说明理由;
(3)你能根据特点②的启示,对一般二次函数y=ax2+bx+c(a≠0)提出一个猜想吗?请用数学语言把你的猜想表达出来,并给予证明.

查看答案和解析>>

已知抛物线y=ax2+2x+3(a≠0)有如下两个特点:①无论实数a怎样变化,其顶点都在某一条直线l上;②若把顶点的横坐标减少,纵坐标增大分别作为点A的横、纵坐标;把顶点的横坐标增加,纵坐标增加分别作为点B的横、纵坐标,则A,B两点也在抛物线y=ax2+2x+3(a≠0)上。
(1)求出当实数a变化时,抛物线y=ax2+2x+3(a≠0)的顶点所在直线l的解析式;
(2)请找出在直线l上但不是该抛物线顶点的所有点,并说明理由;
(3)你能根据特点②的启示,对一般二次函数y=ax2+bx+c(a≠0)提出一个猜想吗?请用数学语言把你的猜想表达出来,并给予证明。

查看答案和解析>>


同步练习册答案