如图3:在RtACB中.C=900.AC=8.BC=6.CD是斜边AB上的高. 查看更多

 

题目列表(包括答案和解析)

(2012•房山区一模)如图1,在△ABC中,∠ACB=90°,AC=BC=
5
,以点B为圆心,以
2
为半径作圆.
(1)设点P为⊙B上的一个动点,线段CP绕着点C顺时针旋转90°,得到线段CD,连接DA,DB,PB,如图2.求证:AD=BP;
(2)在(1)的条件下,若∠CPB=135°,则BD=
2
2
或2
2
2
或2

(3)在(1)的条件下,当∠PBC=
135
135
° 时,BD有最大值,且最大值为
10
+
2
10
+
2
;当∠PBC=
45
45
° 时,BD有最小值,且最小值为
10
-
2
10
-
2

查看答案和解析>>

(根据课本习题改编)如图1,在△ABC中,∠C=90°,AC=4,BC=3,四边形DEFG为△ABC的内接正方形,若设正方形的边长为x,容易算出x的长为
6037

探究与计算:
(1)如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为
 

(2)如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为
 

(3)如图4,若三角形内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,请你猜想正方形的边长是多少?并对你的猜想进行证明.
精英家教网

查看答案和解析>>

如图1,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.

(1)当直线l不与底边AB相交时,求证:EF=AE+BF.
(2)如图2,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下三种可能的位置时,EF、AE、BF三者之间的数量关系.(直接填空)
①当AD>BD时,关系是:
AE=BF+EF
AE=BF+EF

②当AD=BD时,关系是:
AE=BF
AE=BF

③当AD<BD时,关系是:
BF=AE+EF
BF=AE+EF

查看答案和解析>>

(1)如图1,在△ABC中,BC=3,AC=4,AB=5.D为AB边上一点,且△ACD与△BCD的周长相等,则AD=
2
2

(2)如图2,在△ABC中,BC=a,AC=b,AB2=BC2+AC2.E为BC边上一点,且△ABE与△ACE的周长相等;F为AC边上一点,且△ABF与△BCF的周长相等,求CE•CF(用含a,b的式子表示).

查看答案和解析>>

如图1,在△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕顶点C顺时针旋转30°,得到△A′B′C.连接A′A、B′B,设△ACA′和△BCB′的面积分别为S△ACA和S△BCB

(1)直接写出S△ACA′:S△BCB′的值
9:16
9:16

(2)如图2,当旋转角为θ(0°<θ<180°)时,S△ACA′与S△BCB′的比值是否发生变化,若不变请证明;若改变,写出变化后的比值(可用含θ的代数式表示).

查看答案和解析>>


同步练习册答案