求出底边上的高的长. 查看更多

 

题目列表(包括答案和解析)

画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:用尺规作图,保留作图痕迹,写出已知,求作,不写作法和证明)。
已知:
求作:

查看答案和解析>>

己知三角形面积为2cm,其底边长为x cm,底边上的高为y cm,求y关于x的函数关系式,并作出此函数的图像。

查看答案和解析>>

在等腰三角形ABC中,AB=AC,其一腰上的高为h。 M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形1来证明:h1+h2=h
(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论,请你画出图形,并直接写出结论不必证明。
(3)利用以上结论解答,如图2在平面直角坐标系中有两条直线l1:y=x+3 , l2:y=-3x+3,若l2上的一点M到l1的距离是,求点M的坐标。

查看答案和解析>>

如图是用一块边长为60cm 的正方形薄钢片制作的一个长方体盒子。
(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图甲),然后把四边折合起来(如图乙)。
  ①求做成的盒子底面积y(cm2)与截去小正方形边长x(cm)之间的函数关系式;  
②当做成的盒子的底面积为900cm2时,试求该盒子的容积。
(2)如果要做成一个有盖的长方体盒子,其制 作方案要求同时符合下列两个条件:  
①必须在薄钢片的四个角上各截去一个四边形;(其余部分不能裁截)  
②折合后薄钢片既无空隙、又不重叠地围成各盒面,请你画出符合上述制作方案的一种草案  (不必说明画法与根据),并求当底面积为800cm2时,该盒子的高。

查看答案和解析>>

把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计)。
(1)如图1,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子。

①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值及此时剪掉的正方形的边长;如果没有,请说明理由。
(2)如图2在正方形硬纸板上剪掉一些矩形(图2中阴影为剪去部分),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高。

查看答案和解析>>


同步练习册答案