23.为保证交通安全.汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度的关系.以便及时刹车.下表是某款车在平坦道路上路况良好时刹车后的停止距离与汽车行驶速度的对应值表:行驶速度406080-停止距离(米)163048- 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)
某商店经销一批小家电,每个小家电的成本为40元。据市场分析,销售单价定为50元时,一个月能售出500件;若销售单价每涨1元,月销售量就减少10件.针对这种小家电的销售情况,请回答以下问题:
(1)设销售单价定为x元(x>50),月销售利润为y元,求y(用含x的代数式表示);
(2)现该商店要保证每月盈利8750元,同时又要使顾客得到尽可能多的实惠,那么销售单价应定为多少元?

查看答案和解析>>

(本题满分12分)

某商店经销一批小家电,每个小家电的成本为40元。据市场分析,销售单价定为50元时,一个月能售出500件;若销售单价每涨1元,月销售量就减少10件.针对这种小家电的销售情况,请回答以下问题:

(1)设销售单价定为x元(x>50),月销售利润为y元,求y(用含x的代数式表示);

(2)现该商店要保证每月盈利8750元,同时又要使顾客得到尽可能多的实惠,那么销售单价应定为多少元?

 

查看答案和解析>>

(本题满分12分,任选一题作答.)
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当0<t<
52
时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

查看答案和解析>>

(本题满分12分)

如图,在平面直角坐标系中,抛物线与x轴的右交点为点A,与y

 

轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)

(1)求A,B,C三点的坐标和抛物线的顶点的坐标;

(2)当t为何值时,四边形PQCA为平行四边形?

(3)请说明当0<t<4.5时,△PQF的面积总为定值;

(4)当0≤t≤4.5是否存在△PQF为等腰三角形?当t为何值时,△PQF为等腰三角形?(直接写出结果)

 

查看答案和解析>>

(本题满分12分)
我国是世界上严重缺水的国家之一,为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元()收费.设一户居民月用水吨,应收水费元,之间的函数关系如图所示.

(1)求的值,若某户居民上月用水8吨,则应收水费多少元?
(2)求的值,并写出当时,之间的函数关系式;
(3)已知上月居民甲比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?

查看答案和解析>>


同步练习册答案