(2)若直线与y轴交于点P.抛物线.过A.B.P三点.求这条抛物线的函数关系式. 查看更多

 

题目列表(包括答案和解析)

抛物线对称轴为直线x=4,且过点O(0,0),B(-2,-10),A是抛物线与x轴另一个交点.
(1)求二次函数的解析式;
(2)如图,点C从O点出发,沿x轴以每秒钟一个单位的速度运动,矩形CDEF内接于抛物线,C、D在x轴上,E、F在抛物线上,运动时间t(0<t<4)为何值时,内接矩形CDEF的周长最长?并求周长的最大值;
(3)在(2)中内接矩形CDEF的周长取得最大的条件下,x轴上是否存在点P使△精英家教网PEF为直角三角形(P为直角顶点)?若存在,请求P点坐标;若不存在,说明理由.

查看答案和解析>>

抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.
(1)求抛物线的解析式;
(2)如图1,设抛物线y=ax2+bx+3的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移后抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的取值范围;
(3)如图2,将抛物线y=ax2+bx+3平移,平移后抛物线与x轴交于点E、F,与y轴交于点N,当E(-1,0)、F(5,0)时,在抛物线上是否存在点G,使△GFN中FN边上的高为7
2
?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.
(1)求抛物线的解析式;
(2)如图1,设抛物线y=ax2+bx+3的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移后抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的取值范围;
(3)如图2,将抛物线y=ax2+bx+3平移,平移后抛物线与x轴交于点E、F,与y轴交于点N,当E(-1,0)、F(5,0)时,在抛物线上是否存在点G,使△GFN中FN边上的高为数学公式?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

抛物线y=ax2和直线y=kx+b(k为正常数)交于点A和点B,其中点A的坐标是(-2,1),过点A作x轴的平行线交抛物线于点E,点D是抛物线上B.E之间的一个动点,设其横坐标为t,经过点D作两坐标轴的平行线分别交直线AB于点C.B,设CD=r,MD=m
(1)根据题意可求出a=______,点E的坐标是______.
(2)当点D可与B、E重合时,若k=0.5,求t的取值范围,并确定t为何值时,r的值最大;
(3)当点D不与B、E重合时,若点D运动过程中可以得到r的最大值,求k的取值范围,并判断当r为最大值时m的值是否最大,说明理由.(下图供分析参考用)

查看答案和解析>>

抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.
(3)对于二次三项式x2-10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.

查看答案和解析>>


同步练习册答案