24.已知.如图12.在平面直角坐标系中.抛物线的解析式为.将抛物线平移后得到抛线物.若抛物线经过点(0.2).且其顶点A的横坐标为最小正整数. 查看更多

 

题目列表(包括答案和解析)

如图1,在平面直角坐标系中有矩形OABC,O是坐标系的原点,A在x轴上,C在y轴上,OA=6,OC=2.
(1)分别写出A、B、C三点的坐标;
(2)已知直线l经过点P(0,-
12
)并把矩形OABC的面积平均分为两部分,求直线l的函数表达式;
(3)设(2)的直线l与矩形的边OA、BC分别相交于M和N,以线段MN为折痕把四边形MABN翻折(如图2),使A、B两点分别落在坐标平面的A'、B'位置上.求点A'的坐标及过A'、B、C三点的抛物线的函数表达式.
精英家教网

查看答案和解析>>

如图3,在平面直角坐标系中,已知点A(-50)、

   B30),△ABC的面积为12,试求点C的坐标特点。

 

查看答案和解析>>

已知:如图,ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB。
(1)求cos∠ABC的值;
(2)若E是x轴正半轴上的一点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO 是否相似,同时说明理由;
(3)点M在平面直角坐标系中,点F在直线AB上,如果以A、C、F、M为顶点的四边形为菱形,请直接写出F点坐标。

查看答案和解析>>

在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:
若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;
若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.
例如:点P1(1,2),点P1(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).
(1)已知点A(-
1
2
,0
),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;
(2)如图2,已知C是直线y=
3
4
x+3
上的一个动点,点D的坐标是(0,1),求点C与点D的“非常距离”最小时,相应的点C的坐标.

查看答案和解析>>

15、已知,如图,在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标.

查看答案和解析>>


同步练习册答案