其中能说明∥的是 A.①②⑤ B.①③ C.①④ D.③④ 查看更多

 

题目列表(包括答案和解析)

有A、B、C三种不同型号的卡片,其中A型卡片是边长为a的正方形,B型卡片是长为b、宽为a的长方形,C型卡片是边长为b的正方形.
(1)请你选取相应型号和数量的卡片,拼成一个正方形;(要求:3种型号都用上)
(2)现有A型卡片1张,B型卡片6张,C型卡片10张,从这17张卡片中取16张,能拼成一个长方形有哪些情况?请运用乘法公式或因式分解说明理由;
(3)就所给的卡片,请你自编一道与上(1)、(2)不同类型的问题,并作出解答.

查看答案和解析>>

有A、B、C三种不同型号的卡片,其中A型卡片是边长为a的正方形,B型卡片是长为b、宽为a的长方形,C型卡片是边长为b的正方形.
(1)请你选取相应型号和数量的卡片,拼成一个正方形;(要求:3种型号都用上)
(2)现有A型卡片1张,B型卡片6张,C型卡片10张,从这17张卡片中取16张,能拼成一个长方形有哪些情况?请运用乘法公式或因式分解说明理由;
(3)就所给的卡片,请你自编一道与上(1)、(2)不同类型的问题,并作出解答.

查看答案和解析>>

若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=-c3-pc2-qc,即有:m=c×(-c2-pc-q),由于-c2-pc-q与c及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数.例如:方程x3+4x2+3x-2=0中-2的因数为±1和±2,将它们分别代入方程x3+4x2+3x-2=0进行验证得:x=-2是该方程的整数解,-1,1,2不是方程的整数解.
解决问题:
(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?
(2)方程x3-2x2-4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.

查看答案和解析>>

若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=-c3-pc2-qc,即有:m=c(-c2-pc-q),由于-c2-pc-q与c及m都是整数,所以c是m的因数。上述过程说明:关于x的整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数。例如:方程x3+4x2+3x-2=0中-2的因数为±1和±2,将它们分别代入方程x3+4x2+3x-2=0进行验证得:x=-2是该方程的整数解,-1,1,2不是方程的整数解。解决问题:
(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?
(2)方程x3-2x2-4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由。

查看答案和解析>>

若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=-c3-pc2-qc,即有:m=c×(-c2-pc-q),由于-c2-pc-q与c及m都是整数,所以c是m的因数.

上述过程说明:整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数.

例如:方程x3+4x2+3x-2=0中-2的因数为±1和±2,将它们分别代入方程x3+4x2+3x-2=0进行验证得:x=-2是该方程的整数解,-1、1、2不是方程的整数解.

解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?

(2)方程x3-2x2-4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.

查看答案和解析>>


同步练习册答案