在△ABC中如果一个内角等于另一个内角的2倍.我们称这个三角形为倍角三角形.小明在观察两块三角板时发现.这两个三角形都是倍角三角形. 查看更多

 

题目列表(包括答案和解析)

在△ABC中,∠A,∠B,∠C所对的边分别用a,b,c表示.

(1)如图,在△ABC中,∠A=2∠B,且∠A=60°.求证:a2=b(b+c);

(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?请证明你的结论.

查看答案和解析>>

新知认识:在△ABC中,∠A,∠B,∠C所对的边分别用a,b,c表示,如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.
(1)特殊验证:如图1,在△ABC中,若a=数学公式,b=1,c=2.求证:△ABC为倍角三角形﹔
(2)模型探究:如图2,对于任意的倍角三角形,若∠A=2∠B.求证:a2=b(b+c)﹔
(3)拓展应用:在△ABC中,若∠C=2∠A=4∠B.求证:数学公式

查看答案和解析>>

我们给出如下定义:如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.
(1)若∠A=2∠B,且∠A=60°,求证:a2=b(b+c).
(2)如果对于任意的倍角三角形ABC(如图),其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?请证明你的结论;
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

我们给出如下定义:如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.
(1)若∠A=2∠B,且∠A=60°,求证:a2=b(b+c).
(2)如果对于任意的倍角三角形ABC(如图),其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?请证明你的结论;
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

(2013•莆田质检)新知认识:在△ABC中,∠A,∠B,∠C所对的边分别用a,b,c表示,如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.
(1)特殊验证:如图1,在△ABC中,若a=
3
,b=1,c=2.求证:△ABC为倍角三角形﹔
(2)模型探究:如图2,对于任意的倍角三角形,若∠A=2∠B.求证:a2=b(b+c)﹔
(3)拓展应用:在△ABC中,若∠C=2∠A=4∠B.求证:
b
a
+
b
c
=1

查看答案和解析>>


同步练习册答案