题目列表(包括答案和解析)
(本小题满分12分)设函数
(1)当
时,求函数
的最大值;
(2)令
,(
)其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(3)当
,
,方程
有唯一实数解,求正数
的值.
设
是两个不共线的非零向量.
(1)若
=
,
=
,
=
,求证:A,B,D三点共线;
(2)试求实数k的值,使向量
和
共线. (本小题满分13分)
【解析】第一问利用
=(
)+(
)+
=
=
得到共线问题。
第二问,由向量
和
共线可知
存在实数
,使得
=
(
)
=
,结合平面向量基本定理得到参数的值。
解:(1)∵
=(
)+(
)+![]()
=
=
……………3分
∴
……………5分
又∵
∴A,B,D三点共线 ……………7分
(2)由向量
和
共线可知
存在实数
,使得
=
(
)
……………9分
∴
=
……………10分
又∵
不共线
∴
……………12分
解得![]()
(12分)设函数
(1)求函数
的单调区间;
(2)若
,求不等式
的解集。----------------
(本题满分12分)第(1)小题满分5分,第(2)小题满分7分。
关于的不等式的解集为.
(1)求实数、的值;
(2)若,,且为纯虚数,求的值.
(本题满分12分)第(1)小题满分5分,第(2)小题满分7分。
关于
的不等式
的解集为
.
(1)求实数
、
的值;
(2)若
,
,且
为纯虚数,求
的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com