题目列表(包括答案和解析)
(本小题满分14分)
阅读下面一段文字:已知数列
的首项
,如果当
时,
,则易知通项
,前
项的和
. 将此命题中的“等号”改为“大于号”,我们得到:数列
的首项
,如果当
时,
,那么
,且
. 这种从“等”到“不等”的类比很有趣。由此还可以思考:要证
,可以先证
,而要证
,只需证
(
). 结合以上思想方法,完成下题:
已知函数
,数列
满足
,
,若数列
的前
项的和为
,求证:
.
(本题满分18分)
对于定义域为D的函数,如果存在区间,同时满足:
①在内是单调函数;
②当定义域是时,的值域也是.
则称是该函数的“和谐区间”.
(1)求证:函数不存在“和谐区间”.
(2)已知:函数()有“和谐区间”,当变化时,求出的最大值.
(3)易知,函数是以任一区间为它的“和谐区间”.试再举一例有“和谐区间”的函数,并写出它的一个“和谐区间”.(不需证明,但不能用本题已讨论过的及形如的函数为例)
| 5 |
| x |
| (a2+a)x-1 |
| a2x |
| bx+c |
| ax |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com