1.经过平面上不重合的三个点中任意两点画直线.共可画直线的条数为 A.1 B.2 C.3 D.1或3 查看更多

 

题目列表(包括答案和解析)

作业宝(1)阅读理解:
我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图1所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,
“宽臂”的宽度=PQ=QR=RS,(这个条件很重要哦!)勾尺的一边MN满足M,N,Q三点共线(所以PQ⊥MN).
下面以三等分∠ABC为例说明利用勾尺三等分锐角的过程:
第一步:画直线DE使DE∥BC,且这两条平行线的距离等于PQ;
第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在∠ABC的BA边上;
第三步:标记此时点Q和点P所在位置,作射线BQ和射线BP.
请完成第三步操作,图中∠ABC的三等分线是射线______、______.
(2)在(1)的条件下补全三等分∠ABC的主要证明过程:
∵______,BQ⊥PR,
∴BP=BR.(线段垂直平分线上的点与这条线段两个端点的距离相等)
∴∠______=∠______.
∵PQ⊥MN,PT⊥BC,PT=PQ,
∴∠______=∠______.
(角的内部到角的两边距离相等的点在角的平分线上)
∴∠______=∠______=∠______.
(3)在(1)的条件下探究:数学公式是否成立?如果成立,请说明理由;如果不成立,请在图2中∠ABC的外部画出数学公式(无需写画法,保留画图痕迹即可).

查看答案和解析>>

操作1:如图1,一三角形纸片ABC,分别取AB、AC的中点D、E,连接DE,沿DE将纸片剪开,并将其中的△ADE纸片绕点E旋转180°后可拼合(无重叠无缝隙)成平行四边形纸片BCFD.
操作2:如图2,一平行四边形纸片ABCD,E、F、G、H分别是AB、BC、CD、AD边的中点,沿EF剪开并将其中的△BFE纸片绕点E旋转180°到△AF1E位置;沿HG剪开并将其中的△DGH纸片绕点H旋转180°到△AG1H位置;沿FG剪开并将△CFG纸片放置于△AF1G1的位置,此时四张纸片恰好拼合(无重叠无缝隙)成四边形FF1G1G.则四边形FF1G1G的形状是
 

精英家教网
操作、思考并探究:
(1)如图3,如果四边形ABCD是任意四边形(不是梯形或平行四边形)的纸片,E、F、G、H分别是AB、BC、CD、AD的中点.依次沿EF、FG、GH、HE剪开得到四边形纸片EFGH.请判断四边形纸片EFGH的形状,并说明理由.
(2)你能将上述四边形纸片ABCD经过恰当地剪切后拼合(无重叠无缝隙)成一个平行四边形纸片?请在图4上画出对应的示意图.
精英家教网
(3)如图5,E、F、G、H分别是四边形ABCD各边的中点,若△AEH、△BEF、△CFG、△DGH的面积分别为S1、S2、S3、S4,且S1=2,S3=5,则四边形ABCD是面积是
 
.(不要求说明理由)

查看答案和解析>>

(1)操作1:如图1,一三角形纸片ABC,分别取AB、AC的中点D、E,连接DE,沿DE将纸片剪开,并将其中的△ADE纸片绕点E旋转180°后可拼合(无重叠无缝隙)成平行四边形纸片BCFD。
操作2:如图2,一平行四边形纸片ABCD,E、F、G、H分别是AB、BC、CD、AD边的中点,沿EF剪开并将其中的△BFE纸片绕点E旋转180°到△AF1E位置;沿HG剪开并将其中的△DGH纸片绕点H旋转180°到△AG1H位置;沿FG剪开并将△CFG纸片放置于△AF1G1的位置,此时四张纸片恰好拼合(无重叠无缝隙)成四边形FF1G1G。则四边形FF1G1G的形状是(      )。
操作、思考并探究:
(2)如图3,如果四边形ABCD是任意四边形(不是梯形或平行四边形)的纸片,E、F、G、H分别是AB、BC、CD、AD的中点。依次沿EF、FG、GH、HE剪开得到四边形纸片EFGH。 请判断四边形纸片EFGH的形状,并说明理由。
(3)你能将上述四边形纸片ABCD经过恰当地剪切后拼合(无重叠无缝隙)成一个平行四边形纸片?请在图4上画出对应的示意图。
(4)如图5,E、F、G、H分别是四边形ABCD各边的中点,若△AEH、△BEF、△CFG、△DGH的面积分别为S1、S2、S3、S4,且S1=2 ,S3=5 ,则四边形ABCD是面积是(      )。(不要求说明理由)

查看答案和解析>>


同步练习册答案