方程两边同加上 : ② 查看更多

 

题目列表(包括答案和解析)

某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).

(1)在△DEF沿AC方向移动的过程中,该同学发现:F、C两点间的距离逐渐
变小
变小
;连接FC,∠FCE的度数逐渐
变大
变大
.(填“不变”、“变大”或“变小”)
(2)△DEF在移动的过程中,∠FCE与∠CFE度数之和是否为定值,请加以说明;
(3)能否将△DEF移动至某位置,使F、C的连线与AB平行?请求出∠CFE的度数.

查看答案和解析>>

某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,;图②中,.图③是该同学所做的一个实验:他将△的直角边与△的斜边重合在一起,并将△沿方向移动.在移动过程中,两点始终在边上(移动开始时点与点重合).
(1) 在△沿方向移动的过程中,该同学发现:两点间的距离  ;连接的度数       .(填“不变”、“ 逐渐变大”或“逐渐变小”)
(2) △在移动过程中,度数之和是否为定值,请加以说明;
(3) 能否将△移动至某位置,使的连线与平行?如果能,请求出此时的度数,如果不能,请说明理由。

查看答案和解析>>

某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,;图②中,.图③是该同学所做的一个实验:他将△的直角边与△的斜边重合在一起,并将△沿方向移动.在移动过程中,两点始终在边上(移动开始时点与点重合).
(1) 在△沿方向移动的过程中,该同学发现:两点间的距离  ;连接的度数       .(填“不变”、“ 逐渐变大”或“逐渐变小”)
(2) △在移动过程中,度数之和是否为定值,请加以说明;
(3) 能否将△移动至某位置,使的连线与平行?如果能,请求出此时的度数,如果不能,请说明理由。

查看答案和解析>>

(1)问题探究

数学课上,李老师给出以下命题,要求加以证明.

如图1,在△ABC中,M为BC的中点,且MA=BC,求证∠BAC=90°.

同学们经过思考、讨论、交流,得到以下证明思路:

思路一 直接利用等腰三角形性质和三角形内角和定理…

思路二 延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…

思路三 以BC为直径作圆,利用圆的知识…

思路四…

请选择一种方法写出完整的证明过程;

(2)结论应用

李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:

①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙O的切线;

②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.

 

 

查看答案和解析>>

(1)问题探究
数学课上,李老师给出以下命题,要求加以证明.
如图1,在△ABC中,M为BC的中点,且MA=BC,求证∠BAC=90°.
同学们经过思考、讨论、交流,得到以下证明思路:
思路一 直接利用等腰三角形性质和三角形内角和定理…
思路二 延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…
思路三 以BC为直径作圆,利用圆的知识…
思路四…
请选择一种方法写出完整的证明过程;
(2)结论应用
李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:
①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙O的切线;
②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.

查看答案和解析>>


同步练习册答案