4.已知点(一2.l).(一1.2).(1.3)都在直线上.则1, 2, 3的值的大小关系是 . 查看更多

 

题目列表(包括答案和解析)

精英家教网在直角坐标系中,抛物线y=-
12
x2+mx-n与x轴交于A、B两点.与y轴交于C点.已知A、B两点都在x轴负半轴上(A左B右),△AOC与△COB相似,且tan∠CBO=4tan∠BCO.
(1)求抛物线的解析式;
(2)若此抛物线的对称轴与直线y=nx交于D.以D为圆心,作与x轴相切的圆,交y轴于M、N两点.求劣弧MN所对的弓形面积;
(3)在y轴上是否存在一点F,使得FD+FA的值最小,若存在,求出△ABF的面积,若不存在,说明理由.

查看答案和解析>>

已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示);若不存在,请说明理由.
精英家教网

查看答案和解析>>

已知,如图,过点A、O的圆与y轴相交于一点C,与AB相交于一点E,直线AB的解析式为y=kx+4k,过点A、O的抛物线y=ax2+bx+c的顶点为P.
(1)若点C的坐标为(0,
4
3
3
),AC平分∠BAO,求点B的坐标;
(2)若AC=
2
OE,且点P在AB上,是否存在实数m,对于抛物线y=ax2+bx+c上任意一点M(x,y),都能使(x+2)2+(y-2+m)2=(y-2-m)2成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

已知:如图(1)△ABC、△ADE都是等腰直角三角形,连接BD、CE.
(1)求证:△BAD≌△CAE;
(2)如果△ADE绕点A逆时针旋转,恰好点C、D、E三点在同一直线上(如图(2)所示).试猜想线段BD和CE有什么关系,并证明你的猜想.

查看答案和解析>>

直线l同侧有A、B、C三点,如果A、B两点确定的直线l1,与B、C两点确定的直线l2都与直线l平行,则A、B、C三点的位置关系是
在同一直线上
在同一直线上
,理论依据是
在同一平面内,经过直线外一点有且只有一条直线与已知直线平行
在同一平面内,经过直线外一点有且只有一条直线与已知直线平行

查看答案和解析>>


同步练习册答案