题目列表(包括答案和解析)
(本小题满分10分)![]()
(1)如图24—1,已知△ABC中,∠BAC=45°,AB="AC," AD⊥BC于D, 将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)如果⑴中AB≠AC,其他不变,如图24—2.那么四边形AEGF是否是正方形?请说明理由.
(3)在⑵中,若BD=2,DC=3,求AD的长.
小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索。
【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长。
小明和小聪经过交流,得到了如下的两种解决方法:
方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=100
;
方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=50
,
∴AB=100
。
感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,
可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式。
(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,
),C为直线AB上一点,过A、O、C的⊙E的半径为2. 求线段OC的长。
(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=2
,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.
① y关于x的函数关系式;②求线段EF长度的最小值。
![]()
如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”
(1)请用直尺与圆规画一个“好玩三角形”;
(2)如图1,在Rt⊿ABC中,∠C=90°,
,求证:⊿ABC是“好玩三角形”;
(3)如图2,已知菱形ABCD的边长为a, ∠ABC=2β,点P,Q从点A同时出发,以相同的速度分别沿折线AB-BC和AD-DC向终点C运动,记点P所经过的路程为S
①当β=45°时,若⊿APQ是“好玩三角形”,试求
的值
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个⊿APQ能成为“好玩三角形”请直接写出tanβ的取值范围。
(4)本小题为选做题
依据(3)中的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与⊿APQ是“好玩三角形”的个数关系的真命题(“好玩三角形”的个数限定不能为1)。
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com