题目列表(包括答案和解析)
如下图,正方形ABCD的边长为4,MN//BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是 .
![]()
如图,正方形ABCD中,M为BC上一点,且
BC.△AMN为等腰直角三角形,斜边AN与CD交于点F,延长AN与BC的延长线交于点E,连接MF、CN,作NG⊥BE,垂足为G,下列结论:①△ABM≌△MGN;②△CNG为等腰直角三角形;③MN=EN;④S△ABM=S△CEN;⑤BM+DF=MF.其中正确的个数为
![]()
2个
3个
4个
5个
如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
![]()
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
![]()
(3)若将(1)中的“正方形ABCD”改为“正
边形ABCD…X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.
(直接写出答案,不需要证明)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com