(参考数值:0×5+1×7+2×8+3×11+4×19=132..公式见卷首) 查看更多

 

题目列表(包括答案和解析)

某城市理论预测2000年到2004年人口总数与年份的关系如下表所示

(1)请根据上表提供的数据,求Y关于X的线性回归方程

(2)据此估计2005年该城市人口总数.

(参考数值:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)

查看答案和解析>>

某城市理论预测2000年到2004年人口总数与年份的关系如下表所示

年份200x(年)

0

1

2

3

4

人口数 y (十万)

5

7

8

11

19

根据表格和线性回归方程,可预报在2005年,该城市人口总数是___________

( 参考数值:0×5+1×7+2×8+3×11+4×19=132,

,公式见卷首 )

 

查看答案和解析>>

(2012•长春模拟)某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号 1 2 3 4 5 6 7 8 9 10
数    学 1.3 12.3 25.7 36.7 50.3 67.7 49.0 52.0 40.0 34.3
物    理 2.3 9.7 31.0 22.3 40.0 58.0 39.0 60.7 63.3 42.7
学生序号 11 12 13 14 15 16 17 18 19 20
数    学 78.3 50.0 65.7 66.3 68.0 95.0 90.7 87.7 103.7 86.7
物    理 49.7 46.7 83.3 59.7 50.0 101.3 76.7 86.0 99.7 99.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

某城市理论预测2000年到2004年人口总数与年份的关系如下表所示

(Ⅰ)请画出上表数据的散点图;

(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

(Ⅲ)据此估计2005年该城市人口总数.

参考数值:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30,参考公式:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

某城市理论预测2000年到2004年人口总数与年份的关系如下表所示

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,求出y关于x的线性回归方程x+

(3)据此估计2005年.该城市人口总数.

(参考数值:0×5+1×7+2×8+3×11+4×19=132,,公式见卷首)

查看答案和解析>>

一、选择题:BDCCB   BADCA

二、填空题:    11.  2            12.     

13.       14.

三、解答题:

15、解:依题意得:(1)=0,解之得m=0或m=3

∴当m=0或m=3时,复数是实数; ……………4分

(2)≠0,解之得m≠0且m≠3

∴当m≠0且m≠3时,复数是虚数;……………8分

(3),解之得m=3

∴当m=3时,复数是纯虚数.      ……………12分

16、解:(1)∵      ∴  两边平方相加,

   即  .       ………………4分

∴曲线是长轴在x轴上且为10,短轴为8,中心在原点的椭圆.   ………6分

(2)∵∴由代入

                    ……………10分

∴它表示过(0,)和(1, 0)的一条直线.               …………12分

 

 

 

 

 

17、解:(Ⅰ),                                  ………1分

.                               ………2分

            .                            ………4分

        椭圆的方程为,                       ………5分

因为                               ………6分

所以离心率.                           ………8分

(Ⅱ)设的中点为,则点.           ………10分

又点K在椭圆上,则中点的轨迹方程为  ………14分

 

 

18、解:(1)列出2×2列联表

 

 

说谎

不说谎

合计

女生

15

5

20

男生

10

20

30

合计

25

25

50

…………6分

(2)假设H0 "说谎与性别无关",则随机变量K2的观测值:

                  ……………10分

,而             ……………………12分

所以有99.5%的把握认为"说谎与性别有关".          ……………14分

 

 

 

 

 

 

 

 

 

 

 

 

19、解:(1)

………………4分

(2),0×5+1×7+2×8+3×11+4×19=132,

         …………8分

 

故Y关于x的线性回归方程为 y=3.2x+3.6         ………10分

(3)x=5,y=196(万)

据此估计2005年.该 城市人口总数196(万)            ………14分

 

 

 

 

 

 

 

 

 

 

 

 

20、解:(1)设椭圆的半焦距为,依题意   ………2分

 

∴  所求椭圆方程为.         ………4分

 

(2)设

轴时,.                                ………5分

轴不垂直时,设直线的方程为.        ………6分

由已知,得.                 ………7分

代入椭圆方程,整理得,………8分

.………10分

.     ………12分

当且仅当,即时等号成立.当时,

综上所述.                                      ………13分

最大时,面积取最大值.………14分

 

 


同步练习册答案