25.已知:抛物线y=ax2+bx+c与x轴交于A.B两点.与y轴交于点C.其中点B在x轴的正半轴上.点C在y轴的正半轴上.线段OB.OC的长是方程x2-10x+16=0的两个根.且抛物线的对称轴是直线x=-2.(1)求A.B.C三点的坐标,(2)求此抛物线的表达式,(3)求△ABC的面积,(4)若点E是线段AB上的一个动点.过点E作EF∥AC交BC于点F.连接CE.设AE的长为m.△CEF的面积为S.求S与m之间的函数关系式.并写出自变量m的取值范围,的基础上试说明S是否存在最大值.若存在.请求出S的最大值.并求出此时点E的坐标.判断此时△BCE的形状,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

已知:抛物线y=ax2+bx+c经过A(1,0)、B(5,0)两点,最高点的纵坐标为4,与y轴交于点C.

(1)求该抛物线的解析式;

(2)若△ABC的外接圆⊙交y轴不同于点C的点D,⊙的弦DE平行于x轴,求直线CE的解析式;

查看答案和解析>>

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0)、C(0,-2).

(1)求这条抛物线的函数表达式.

(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.

(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

已知:抛物线y=ax2+bx+c经过点O(0,0),A(7,4),且对称轴l与x轴交于点B(5,0).

(1)求抛物线的表达式;

(2)如图,点E、F分别是y轴、对称轴l上的点,且四边形EOBF是矩形,点C(5,)是BF上一点,将△BOC沿着直线OC翻折,B点与线段EF上的D点重合,求D点的坐标;

(3)在(2)的条件下,点G是对称轴l上的点,直线DG交CO于点H,S△DOH∶S△DHC=1∶4,求G点坐标.

查看答案和解析>>

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0)、C(0,-2).

(1)求这条抛物线的函数表达式.

(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.

(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-4),与x轴交于AB两点,A(-1,0).

(1)求这条抛物线的解析式;

(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线的对称轴交于点F,依次连接ADBE,点Q为线段AB上一个动点(QAB两点不重合),过点Q作QF⊥AE于F,QG⊥DB于G,请判断是否为定值;若是,请求出此定值,若不是,请说明理由;

(1)在(2)的条件下,若点H是线段EQ上一点,过点H作MN⊥EQ,MN分别与边AE、BE相交于M、N,(M与A、E不重合,N与E、B不重合),请判断是否成立;若成立,请给出证明,若不成立,请说明理由.

查看答案和解析>>


同步练习册答案