如图所示.已知正四棱柱ABCD-A1B1C1D1.点E在棱D1D上.截面EAC∥D1B.且面EAC与底面ABCD所成的角为450.AB=a. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图所示,已知圆

 
为圆上一动点,点P在AM上,点N在CM上,且满

的轨迹为曲线E.

(1)求曲线E的方程;(II)若过定点F(0,2)

的直线交曲线E于不同的两点G、H(点G在点F、H之间),

且满足,求的取值范围.

查看答案和解析>>

(本小题满分12分)

如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

 

查看答案和解析>>

(本小题满分12分)如图所示,已知六棱锥的底面是正六边形,平面的中点。

(Ⅰ)求证:平面//平面

(Ⅱ)设,当二面角的大小为时,求的值。

 

查看答案和解析>>

(本小题满分12分)如图所示,已知中,AB=2OB=4,D为AB的中点,若绕直线AO旋转而成的,记二面角B—AO—C的大小为(I)若,求证:平面平面AOB;(II)若时,求二面角C—OD—B的余弦值的最小值。

 

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)如图所示,已知A、B、C是椭圆上三点,其中点A的坐标为,BC过椭圆的中心O,且

   (Ⅰ)求点C的坐标及椭圆E的方程;

   (Ⅱ)若椭圆E上存在两点P, Q,使得的平分线总垂直于z轴,试判断向量是否共线,并给出证明.

                       

 

查看答案和解析>>

 

一、DCABB   DDCBC   AB

二、13.  192    14.   640     15.   4     16.   

17.

(1)     …5分

(2)由已知及(1)知     

学科网(Zxxk.Com)学科网(Zxxk.Com)正弦定理得:

   ……………………10分

18.由题设及等比数列的性质得 

又                 ②

由①②得  或            …………………4分

    或                     …………………6分

                      …………………8分

时,        …………………10分

时,………………12分

19.略(见课本B例1)

20.解:

(1)在正四棱柱中,因为

所以           

又             

连接于点,连接,则,所以

所以是由截面与底面所成二面角的平面角,即

学科网(Zxxk.Com)

所以                 .....................4分

(2)由题设知是正四棱柱.

因为                  

所以                   

又                     

所以是异面直线之间的距离。

因为,而是截面与平面的交线,

所以                     

                   

即异面直线之间的距离为

(3)由题知

                        

因为                    

所以是三棱锥的高,

在正方形中,分别是的中点,则

                             

所以                    

即三棱锥的体积是.

21.(1)解:,由此得切线的方程为

         ………………………4分

(2)切线方程令,得

当且仅当时等号成立。………………………9分

②若,则又由

                   ………………………12分

22.(1)由题可得,设  

 

  

   又

    点P的坐标为   ……………………3分

 

(2)由题意知,量直线的斜率必存在,设PB的斜率为

则PB的直线方程为:由  得

,显然1是该方程的根

,依题意设故可得A点的横坐标

 

                   ……………………7分

(3)设AB的方程为,带入并整理得

               

                  

   …………………(

                 

点P到直线AB的距离

当且仅当,即时取“=”号(满足条件

的面积的最大值为2                      ………………………12分

 

 

 

 


同步练习册答案