已知等腰三角形△ABC中.AB=AC,∠B=60°,则∠A= . 查看更多

 

题目列表(包括答案和解析)

下列说法:
①如图1,△ABC中,AB=AC,分别在AB、BC的延长线上截取数点G、H,使BG=BH,延长AC交GH于点K,且AK=KG,则∠BAC=30°.
②已知:△ABC中,∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,则∠ACB=75°.
③在正方形网格中,网格线的交点称为格点,如图2,A、B是两格点,若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有10个.
④在等边△ABC所在的平面内求一点P,使△PAB、△PBC、△PAC都是等腰三角形,具有这样性质的点P有10个.
其中,正确的有
②③④
②③④
(填写序号,少选、错选均不得分)

查看答案和解析>>

下列说法:
①如图1,△ABC中,AB=AC,分别在AB、BC的延长线上截取数点G、H,使BG=BH,延长AC交GH于点K,且AK=KG,则∠BAC=30°.
②已知:△ABC中,∠ABC=45°,P为BC边上一点,且PC=2PB,∠APC=60°,则∠ACB=75°.
③在正方形网格中,网格线的交点称为格点,如图2,A、B是两格点,若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有10个.
④在等边△ABC所在的平面内求一点P,使△PAB、△PBC、△PAC都是等腰三角形,具有这样性质的点P有10个.
其中,正确的有________(填写序号,少选、错选均不得分)

查看答案和解析>>

(1)如图1,在正△ABC中,M、N分别在BC、AC上,且BM=CN,连AM、BN交于点O,则∠AON=________°
(2)如图2,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=________°.
(3)如图3,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60°.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.
(4)在(1)的条件下,把直线AM平移到图4的直线EOF位置,
①写出所有与△BOF相似的三角形:________
②若点N是AC中点,(其它条件不变)试探索线段EO与FO的数量关系,并说明理由.

查看答案和解析>>

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.
精英家教网

查看答案和解析>>

阅读理解题:
已知:如图,△ABC中,AB=AC,P是底边BC上的任一点(不与B、C重合),CD⊥AB于D,PE⊥AB于E,PF⊥AC于F.
求证:CD=PE+PF.
在解答这个问题时,小明与小颖的思路方法分别如下:
小明的思路方法是:过点P作PG⊥CD于G(如图1),则可证得四边形PEDG是矩形,也可证得△PCG≌△CPF,从而得到PE=DG,PF=CG,因此得CD=PE+PF.
小颖的思路方法是:连接PA(如图2),则S△ABC=S△PAB+S△PAC,再由三角形的面积公式便可证得CD=PE+PF.
由此得到结论:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
阅读上面的材料,然后解答下面的问题:
(1)针对小明或小颖的思路方法,请选择俩人中的一种方法把证明过程补充完整
(2)如图3,梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD=CD=2,E是BC上任意一点,EM⊥BD于M,EN⊥AC于N,试利用上述结论
求EM+EN的值.

查看答案和解析>>


同步练习册答案