8.若抛物线与轴的正半轴相交于点A.则点A的坐标为 查看更多

 

题目列表(包括答案和解析)

如图,抛物线y=ax2+bx+c(a<0)与x轴相交于A、B两点,与y轴的正半轴相交于点C,精英家教网对称轴l与x轴的正半轴相交于点D,与抛物线相交于点F,点C关于直线l的对称点为E.
(1)当a=-2,b=4,c=2时,判断四边形CDEF的形状,并说明理由;
(2)若四边形CDEF是正方形,且AB=
2
,求抛物线的解析式.

查看答案和解析>>

若抛物线y=(x+1)2-2与x轴的正半轴相交于点A,则点A的坐标为(  )
A、(-1-
2
,0)
B、(
2
,0)
C、(-1,-2)
D、(-1+
2
,0)

查看答案和解析>>

已知关于x的一元二次方程ax2+x+2=0
(1)求证:当a<0时,方程ax2+x+2=0一定有两个不等的实数根;
(2)若代数式-x2+x+2的值为正整数,且x为整数时,求x的值;
(3)当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0);若点M在点N的左边,试比较a1与a2的大小.

查看答案和解析>>

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=3.
(1)在AB边上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求点D,E的坐标;
(2)若过点D,E的抛物线与x轴相交于点F(-5,0),求抛物线的解析式和对称轴方程;
(3)若(2)中的抛物线与y轴交于点H,在抛物线上是否存在点P,使△PFH的内心在坐标轴上?若存在,求出点P的坐标,若不存在,请说明理由.
(4)若(2)中的抛物线与y轴相交于点H,点Q在线段OD上移动,作直线HQ,当点Q移动到什么位置时,O,D两点到直线HQ的距离之和最大?请直接写出此时点Q的坐标及直线HQ的解析式.
精英家教网

查看答案和解析>>

(2012•江岸区模拟)如图1,抛物线y=
14
(x-m)2的顶点A在x轴正半轴,与y轴相交于点B,B(0,1),连接AB.
(1)求抛物线的解析式;
(2)如图2,P为AB延长线上一点,PH⊥x轴于H,将△PAH沿直线AB翻折得到△PQA,QA交y轴于点C,若点Q恰好在抛物线上,求Q点坐标;
(3)如图3,将图1中的抛物线沿对称轴向下平移n个长度单位,新抛物线的顶点为P,它与直线AB相交于M、N两点,连接PM、PN.探究:当n取何值时,∠MPN=90°.

查看答案和解析>>


同步练习册答案