24.如图1.正方形ABCD和正方形QMNP. M是正方形ABCD的对称中心.MN交AB于F.QM交AD于E. 查看更多

 

题目列表(包括答案和解析)

(2011•临川区模拟)问题背景:如图1,四边形ABCD和CEFG都是正方形,B,C,E在同一条直线上,连接BG,DE.
问题探究:
(1)①如图1所示,当G在CD边上时,猜想线段BG、DE的数量关系及所在直线的位置关系.(不要求证明)
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,请选择图2或图3证明你的判断.
类比研究:
(2)若将原题中的“正方形”改为“矩形”(如图4所示),且
AB
BC
=
CE
CG
=k(其中k>0),请直接写出线段BG、DE的数量关系及位置关系.请选择图5或图6证明你的判断.
拓展应用:
(3)在(1)中图2中,连接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>

(2010•邢台二模)规律:
如图1,直线m∥n,A、B为直线n上的点,C、P为直线m上的点.如果A、B、C为三个定点,点P在m上移动,那么无论点P移动到何位置,△ABP与△ABC的面积总相等,其理由是
同底等高的两个三角形面积相等
同底等高的两个三角形面积相等

应用:
(1)如图2,△ABC和△DCE都是等边三角形,若△ABC的边长为1,则△BAE的面积是
3
4
3
4

(2)如图3,四边形ABCD和四边形BEFG都是正方形,若正方形ABCD的边长为4,求△ACF的面积.
(3)如图4,五边形ABCDE和五边形BFGHP都是正五边形,若正五边形ABCDE的边长为a,求△ACH的面积(结果不求近似值).

查看答案和解析>>

如图,直角梯形ABCD和正方形EFGC的边BC、CG在同一条直线上,AD∥BC,AB⊥BC于点B,AD=4,AB=6,BC=8,直角梯形ABCD的面积与正方形EFGC的面积相等,将直角梯形ABCD沿BG向右平行移动,当点C与点G重合时停止移动.设梯形与正方形重叠部分的面积为S.
(1)求正方形的边长;
(2)设直角梯形ABCD的顶点C向右移动的距离为x,求S与x的函数关系式;
(3)当直角梯形ABCD向右移动时,它与正方形EFGC的重叠部分面积S能否等精英家教网于直角梯形ABCD面积的一半?若能,请求出此时运动的距离x的值;若不能,请说明理由.

查看答案和解析>>

题背景:如图1,四边形ABCD和CEFG都是正方形,B,C,E在同一条直线上,连接BG,DE.

问题探究:

1.(1)①如图1所示,当G在CD边上时,猜想线段BG、DE的数量关系及所在直线的位置关系.(不要求证明)

②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,请选择图2或图3证明你的判断.

类比研究:

2.(2)若将原题中的“正方形”改为“矩形”(如图所示),且=k(其中k>0),请写出  线段BG、DE的数量关系及位置关系.请选择图5或图6证明你的判断(仅证数量关系).

拓展应用:

3.(3)在(1)中图2中,连接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

 

查看答案和解析>>

题背景:如图1,四边形ABCD和CEFG都是正方形,B,C,E在同一条直线上,连接BG,DE.

问题探究:
【小题1】(1)①如图1所示,当G在CD边上时,猜想线段BG、DE的数量关系及所在直线的位置关系.(不要求证明)
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,请选择图2或图3证明你的判断.
类比研究:
【小题2】(2)若将原题中的“正方形”改为“矩形”(如图所示),且=k(其中k>0),请写出 线段BG、DE的数量关系及位置关系.请选择图5或图6证明你的判断(仅证数量关系).
拓展应用:
【小题3】(3)在(1)中图2中,连接DG、BE,若AB=3,EF=2,求BE2+DG2的值.

查看答案和解析>>


同步练习册答案