如图.点A是半径为6 cm的⊙O上的一个定点.动点P从点A出发.以cm/s的速度沿圆周逆时针运动.当P回到点A立即停止运动. (1)若∠POA=90°.求点P运动的时间, (2)延长OA至B.使AB=OA.当点P运动的时间为2 s时.判断直线BP与⊙O的位置关系.并说明理由. 查看更多

 

题目列表(包括答案和解析)

如图所示,在平面上有一半径为1 cm的圆定点A,OA="4" cm.以点A为旋转中心,使圆O分别顺时针旋转90°,逆时针旋转60°,得到圆B和圆C,作出这两个圆.
(1)试问圆B或圆C的圆心与圆O的圆心O的距离是多少?
(2)试问圆B和圆C的圆心的距离是多少?

查看答案和解析>>

三等分任意角是三大几何作图不能问题之一,古希腊数学家阿基米德就设计出了一个巧妙的三等分角的方法:在直尺边缘上添加一点P,命尺端为O(如图①);设所要三等分的角是∠MCN,以C为圆心,OP为半径作半圆交给定角的两边CM、CN于A、B两点;移动直尺,使直尺上的O点在AC的延长线上移动,P点在圆周上移动,当直尺正好通过B点时,连OPB,则有∠AOB=数学公式∠MCN.这种方法由于在直尺上作了一个记号,不符合尺规作图中直尺只能用来连线的规定,因此还不能算是严格意义上的尺规作图.
(1)动手实践操作,用以上方法三等分∠MCN,在图②中画出图形并标明相应字母;
(2)请你就阿基米德的作图方法给出证明.

查看答案和解析>>

三等分任意角是三大几何作图不能问题之一,古希腊数学家阿基米德就设计出了一个巧妙的三等分角的方法:在直尺边缘上添加一点P,命尺端为O(如图①);设所要三等分的角是∠MCN,以C为圆心,OP为半径作半圆交给定角的两边CM、CN于A、B两点;移动直尺,使直尺上的O点在AC的延长线上移动,P点在圆周上移动,当直尺正好通过B点时,连OPB,则有∠AOB=∠MCN.这种方法由于在直尺上作了一个记号,不符合尺规作图中直尺只能用来连线的规定,因此还不能算是严格意义上的尺规作图.
(1)动手实践操作,用以上方法三等分∠MCN,在图②中画出图形并标明相应字母;
(2)请你就阿基米德的作图方法给出证明.

查看答案和解析>>

如图,已知⊙O1和⊙O2的半径分别为R、r,连接O1O2交⊙O1于点M、交⊙O2于点N.将一个直角三角尺的直角顶点C放在直线O1O2的上方,让两个直角边所在的直线分别经过点M、N,CM交⊙O1于点A,CN交⊙O2于点B.
(1)求证:O1A∥O2B;
(2)直线AB和直线O1O2能否平行?若能够,试指出什么条件下,AB∥O1O2;若不能,试说明理由.
(3)是否存在一点C,使CM•CA=CN•CB?若存在,请说明如何确定点C的位置,并证明你的结论;如果不存在,请说明理由.
精英家教网

查看答案和解析>>

如图,已知⊙O1和⊙O2的半径分别为R、r,连接O1O2交⊙O1于点M、交⊙O2于点N.将一个直角三角尺的直角顶点C放在直线O1O2的上方,让两个直角边所在的直线分别经过点M、N,CM交⊙O1于点A,CN交⊙O2于点B.
(1)求证:O1A∥O2B;
(2)直线AB和直线O1O2能否平行?若能够,试指出什么条件下,AB∥O1O2;若不能,试说明理由.
(3)是否存在一点C,使CM•CA=CN•CB?若存在,请说明如何确定点C的位置,并证明你的结论;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案