10.如图.∠EGF=.∠A+∠B+∠C+∠D+∠E+∠F= 查看更多

 

题目列表(包括答案和解析)

如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG。
(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并填写自变量x的取值范围;
(2)P是MG的中点,请直接写出点P运动路线的长。

查看答案和解析>>

如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移,设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)。
(1)当x为何值时,OP∥AC?
(2)求y与x 之间的函数关系式,并确定自变量x的取值范围;
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由。
(参考数据:1142 =12996,1152=13225,1162 =13456 或4.42=19.36,4.52=20.25,4.62=21.16)

查看答案和解析>>

如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜边上的中点.

如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,(不考虑点P与G、F重合的情况).

(1)当x为何值时,OP∥AC ?

(2)你能不能用含x的式子来表示四边形OAHP面积呢?若能,请表示;若不能,请说明理由。

(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142 =12996,1152 =13225,1162 =13456或4.42 =19.36,4.52 =20.25,4.62 =21.16)

        

查看答案和解析>>

如图,矩形ABCD中,AB=,将∠D与∠C分别沿过A和B的直线向内折叠,使点D,C重合于点G,折痕分别为AE,BF,且∠EGF=∠AGB,则AD=(    )。

查看答案和解析>>

(1)如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°,求∠BOC的度数。

(2)如图(2),△DEF两个外角的平分线相交于点G,∠D=40°,求∠EGF的度数。

(3)由(1)、(2)可以发现∠BOC与∠EGF有怎样的数量关系?
设∠A=∠D=n°,∠BOC与∠EGF是否还具有这样的数量关系?
为什么?

查看答案和解析>>


同步练习册答案