3.如下图所示.AD⊥BC于D.DE∥AB.则∠1与∠2的关系是 查看更多

 

题目列表(包括答案和解析)

小华用两块不全等的等腰直角三角形的三角板摆放图形.
(1)如图①所示△ABC,△DBE,两直角边交于点F,过点F作FG∥BC交AB于点G,连接BF、AD,则线段BF与线段AD的数量关系是
 
;直线BF与直线AD的位置关系是
 
,并求证:FG+DC=AC;
(2)如果小华将两块三角板△ABC,△DBE如图②所示摆放,使D、B、C三点在一条直线上,AC、DE的延长线相交于点F,过点F作FG∥BC,交直线AE于点G,连接AD,FB,则FG、DC、AC之间满足的数量关系式是
 

(3)在(2)的条件下,若AG=7
2
,DC=5,将一个45°角的顶点与点B重合,并绕点B旋转,这个角的两边分别交线段FG于P、Q两点(如图③),线段DF分别与线段BQ、BP相交于M、N两点,若PG=2,求线段MN的长.
精英家教网

查看答案和解析>>

如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=
1
2
AB
.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.

精英家教网

请根据从上面材料中所得到的信息解答下列问题:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=______;
(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=______.
(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=______.
(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.

查看答案和解析>>

如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,数学公式.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.

请根据从上面材料中所得到的信息解答下列问题:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=______;
(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=______.
(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=______.
(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.

查看答案和解析>>

小华用两块不全等的等腰直角三角形的三角板摆放图形.
(1)如图①所示△ABC,△DBE,两直角边交于点F,过点F作FG∥BC交AB于点G,连接BF、AD,则线段BF与线段AD的数量关系是______;直线BF与直线AD的位置关系是______,并求证:FG+DC=AC;
(2)如果小华将两块三角板△ABC,△DBE如图②所示摆放,使D、B、C三点在一条直线上,AC、DE的延长线相交于点F,过点F作FG∥BC,交直线AE于点G,连接AD,FB,则FG、DC、AC之间满足的数量关系式是______;
(3)在(2)的条件下,若AG=数学公式,DC=5,将一个45°角的顶点与点B重合,并绕点B旋转,这个角的两边分别交线段FG于P、Q两点(如图③),线段DF分别与线段BQ、BP相交于M、N两点,若PG=2,求线段MN的长.

查看答案和解析>>

小华用两块不全等的等腰直角三角形的三角板摆放图形.
(1)如图①所示△ABC,△DBE,两直角边交于点F,过点F作FG∥BC交AB于点G,连接BF、AD,则线段BF与线段AD的数量关系是______;直线BF与直线AD的位置关系是______,并求证:FG+DC=AC;
(2)如果小华将两块三角板△ABC,△DBE如图②所示摆放,使D、B、C三点在一条直线上,AC、DE的延长线相交于点F,过点F作FG∥BC,交直线AE于点G,连接AD,FB,则FG、DC、AC之间满足的数量关系式是______;
(3)在(2)的条件下,若AG=,DC=5,将一个45°角的顶点与点B重合,并绕点B旋转,这个角的两边分别交线段FG于P、Q两点(如图③),线段DF分别与线段BQ、BP相交于M、N两点,若PG=2,求线段MN的长.

查看答案和解析>>


同步练习册答案