22.若抛物线y=2x2+bx+c的最高点为.则b= .c= 查看更多

 

题目列表(包括答案和解析)

如图所示,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.
(1)设OB′的长为x,△OB′E的周长为C,求C关于x的函数关系式;
(2)当B′E∥y轴时,求点B′和点E的坐标;
(3)在(2)的条件下,若抛物线y=-2x2+bx+c的对称轴是直线B′E,且经过原点O,求b、c的值;
(4)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.

查看答案和解析>>

若抛物线y=2x2+bx+3的顶点在x轴上,则b=
±2
6
±2
6

查看答案和解析>>

若抛物线y=2x2+bx+c的对称轴是x=-1,则b=
4
4

查看答案和解析>>

如图所示,△OAB是边长为数学公式的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.
(1)设OB′的长为x,△OB′E的周长为C,求C关于x的函数关系式;
(2)当B′E∥y轴时,求点B′和点E的坐标;
(3)在(2)的条件下,若抛物线y=-2x2+bx+c的对称轴是直线B′E,且经过原点O,求b、c的值;
(4)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.

查看答案和解析>>

如图所示,△OAB是边长为的等边三角形,其中O是坐标原点,顶点A在x轴的正方向上,将△OAB折叠,使点B落在边OA上,记为B′,折痕为EF.
(1)设OB′的长为x,△OB′E的周长为C,求C关于x的函数关系式;
(2)当B′E∥y轴时,求点B′和点E的坐标;
(3)在(2)的条件下,若抛物线y=-2x2+bx+c的对称轴是直线B′E,且经过原点O,求b、c的值;
(4)当B′在OA上运动但不与O、A重合时,能否使△EB′F成为直角三角形?若能,请求出点B′的坐标;若不能,请说明理由.

查看答案和解析>>


同步练习册答案