(2)求出这个抛物线与轴的交点坐标, (3)求四边形ABCD的面积. 查看更多

 

题目列表(包括答案和解析)

抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,以PE为边在PE右侧作正方形PEDC(当点P运动时,点C、D也随之运动).
①当正方形PEDC顶点D落在此抛物线上时,求OP的长;
②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,在QF的左侧作正方形QFMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个正方形分别有一条边恰好落在同一条直线上,求此刻t的值.

查看答案和解析>>

抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.

(1)求点B的坐标;

(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,以PE为边在PE右侧作正方形PEDC(当点P运动时,点C、D也随之运动).

①当正方形PEDC顶点D落在此抛物线上时,求OP的长;

②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,在QF的左侧作正方形QFMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个正方形分别有一条边恰好落在同一条直线上,求此刻t的值.

 

查看答案和解析>>

抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,以PE为边在PE右侧作正方形PEDC(当点P运动时,点C、D也随之运动).
①当正方形PEDC顶点D落在此抛物线上时,求OP的长;
②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,在QF的左侧作正方形QFMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个正方形分别有一条边恰好落在同一条直线上,求此刻t的值.

查看答案和解析>>

23、抛物线y=ax2+2x+3(a<0)交x轴于A,B两点,交y轴于点C,顶点为D,而且经过点(2,3).
(1)写出抛物线的解析式及C、D两点的坐标;
(2)连接BC,以BC为边向右作正方形BCEF,求E、F两点的坐标;若将此抛物线沿其对称轴向上平移,试判断平移后的抛物线是否会同时经过正方形BCEF的两个顶点E、F;若能,写出平移后的抛物线解析式,若不能,请说明理由;
(3)若P是抛物线y=ax2+2x+3上任意一点,过点P作直线垂直于抛物线y=ax2+2x+3的对称轴,垂足为Q,那么是否存在着这样的点P,使以P、Q、D为顶点的三角形与△BOC相似?若存在,请求出P点的坐标;若不能,请说明理由.

查看答案和解析>>

抛物线y=a(x+2)2+c与x轴交于A、B两点,与y轴负半轴交于点C,已知点A(-1,0),OB=OC.
(1)求此抛物线的解析式;
(2)若点M是抛物线上一个动点,且S△BCM=S△ABC,求点M的坐标;
(3)Q为直线y=-x-4上一点,在此抛物线的对称轴是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案