解:(I)a2=a1+(-1)1=0, a3=a2+31=3.a4=a3+(-1)2=4 a5=a4+32=13, 所以.a3=3,a5=13. (II) a2k+1=a2k+3k = a2k-1+(-1)k+3k, 所以a2k+1-a2k-1=3k+(-1)k, 同理a2k-1-a2k-3=3k-1+(-1)k-1, a3-a1=3+(-1). 所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+-+(a3-a1) =(3k+3k-1+-+3)+[(-1)k+(-1)k-1+-+(-1)], 由此得a2k+1-a1=(3k-1)+[(-1)k-1], 查看更多

 

题目列表(包括答案和解析)

已知数列{an}满足以下两个条件:①点(an,an+1)在直线y=x+2上,②首项a1是方程3x2-4x+1=0的整数解,
(I)求数列{an}的通项公式;
(II)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,解不等式Tn≤Sn

查看答案和解析>>

已知数列{an}满足以下两个条件:①点(an,an+1)在直线y=x+2上,②首项a1是方程3x2-4x+1=0的整数解,
(I)求数列{an}的通项公式;
(II)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,解不等式Tn≤Sn

查看答案和解析>>

已知数列{an}满足以下两个条件:①点(an,an+1)在直线y=x+2上,②首项a1是方程3x2-4x+1=0的整数解,
(I)求数列{an}的通项公式;
(II)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,解不等式Tn≤Sn

查看答案和解析>>

已知数列{an}满足以下两个条件:①点(an,an+1)在直线y=x+2上,②首项a1是方程3x2-4x+1=0的整数解,
(I)求数列{an}的通项公式;
(II)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,解不等式Tn≤Sn

查看答案和解析>>

(2013•黄冈模拟)挪威数学家阿贝尔,曾经根据阶梯形图形的两种不同分割(如图),利用它们的面积关系发现了一个重要的恒等式一阿贝尔公式:
a1b1+a2b2+a3b3+…+anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn
则其中:(I)L3=
a1+a2+a3
a1+a2+a3
;(Ⅱ)Ln=
a1+a2+a3+…+an
a1+a2+a3+…+an

查看答案和解析>>


同步练习册答案