(Ⅱ)若对于任意的.都有成立.求c的取值范围. 查看更多

 

题目列表(包括答案和解析)

若对于任意x∈R,都有(m-2)x2-2 (m-2)x-4<0恒成立,求实数m的取值范围.

查看答案和解析>>

对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.
(1)若函数f(x)为理想函数,求f(0)的值;
(2)判断函数g(x)=2x-1(x∈[0,1])是否为理想函数,并予以证明;
(3)若函数f(x)为理想函数,假定?x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求证f(x0)=x0

查看答案和解析>>

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f′′(x)是函数y=f(x)的导函数y=f′(x)的导数,若f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.现已知f(x)=x3-3x2+2x-2,请解答下列问题:
(Ⅰ)求函数f(x)的“拐点”A的坐标;
(Ⅱ)求证f(x)的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明);
(Ⅲ)若另一个三次函数G(x)的“拐点”为B(0,1),且一次项系数为0,当x1>0,x2>0(x1≠x2)时,试比较
G(x1)+G(x2)
2
G(
x1+x2
2
)
的大小.

查看答案和解析>>

对于定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)>c恒成立,则称函数f(x)为区间D上的“平底型”函数.
(Ⅰ)判断函数f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设f(x)是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式|t-k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,求实数x的取值范围;
(Ⅲ)若函数g(x)=mx+
x2+2x+n
是区间[-2,+∞)上的“平底型”函数,求m和n的值.

查看答案和解析>>

对于定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)>c恒成立,则称函数f(x)为区间D上的“平底型”函数.
(1)判断函数f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否为R上的“平底型”函数?并说明理由;
(2)若函数g(x)=x+
x2+2x+n
是区间[-2,+∞)上的“平底型”函数,求n的值.
(3)设f(x)是(1)中的“平底型”函数,k为非零常数,若不等式|t-k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,求实数x的取值范围.

查看答案和解析>>

一、选择题

       1.C            2.B            3.B            4.D                   5.B              6.C    

7.D            8.C       9.C       10.C

二、填空题

       11.           12.                  13.                   14.2            15.30°

三、解答题

16.解:(Ⅰ)由,根据正弦定理得,所以

为锐角三角形得.………………………………………………7分

(Ⅱ)根据余弦定理,得

所以,.………………………………………………14分

17.解:(Ⅰ)记表示事件:“位顾客中至少位采用一次性付款”,则表示事件:“位顾客中无人采用一次性付款”.

.………………………………………………7分

(Ⅱ)记表示事件:“位顾客每人购买件该商品,商场获得利润不超过元”.

表示事件:“购买该商品的位顾客中无人采用分期付款”.

表示事件:“购买该商品的位顾客中恰有位采用分期付款”.

.……………………………………14分

18.解法一:(1)作,垂足为,连结,由侧面底面,得底面

因为,所以,又,故为等腰直角三角形,

由三垂线定理,得.………………………7分

(Ⅱ)由(Ⅰ)知

依题设

,由

,作,垂足为

平面,连结为直线与平面所成的角.

所以,直线与平面所成角的正弦值为.………………………………………………14分

解法二:(Ⅰ)作,垂足为,连结,由侧面底面,得平面

因为,所以

为等腰直角三角形,

如图,以为坐标原点,轴正向,建立直角坐标系

因为

,所以

,所以.…………………7分

(Ⅱ).

的夹角记为与平面所成的角记为,因为为平面的法向量,所以互余.

所以,直线与平面所成角的正弦值为.………………………14分

19.解:(Ⅰ)

因为函数取得极值,则有

解得.………………………7分

(Ⅱ)由(Ⅰ)可知,

时,

时,

时,

所以,当时,取得极大值,又

则当时,的最大值为

因为对于任意的,有恒成立,

所以 

解得 

因此的取值范围为.………………………14分

20.解:(Ⅰ)设的公差为的公比为,则依题意有

解得

所以

.………………………6分

(Ⅱ)

,①

,②

②-①得

.………………………12分

21.证明:(Ⅰ)椭圆的半焦距

知点在以线段为直径的圆上,

所以,.………………………6分

(Ⅱ)(?)当的斜率存在且时,的方程为,代入椭圆方程,并化简得

,则

因为相交于点,且的斜率为

所以,

四边形的面积

时,上式取等号.………………………10分

(?)当的斜率或斜率不存在时,四边形的面积.……………………11分

综上,四边形的面积的最小值为.………………………12分

 

 

 


同步练习册答案