6.已知点O为坐标原点.点P满足.则点P到直线的最短距离为 查看更多

 

题目列表(包括答案和解析)

已知点P(x,y)满足
x-2y+4≤0
x+y≤5
x-1≥0
,设A(3,0),则|
OP
|cos∠AOP
(O为坐标原点)的最大值为
 

查看答案和解析>>

已知点P是圆x2+y2=1上一动点,点P在y轴上的射影为Q,设满足条件
QM
QP
(λ为非零常数)的点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)若存在过点N(
1
2
,0)
的直线l与曲线C相交于A、B两点,且
OA
OB
=0(O为坐标原点),求λ的取值范围.

查看答案和解析>>

已知点P(x,y)满足
x-4y+3≤0
3x+5y≤25
x-1≥0
,设A(2,0),则|
OP
|sin∠AOP
(O为坐标原点)的最大值为
22
5
22
5

查看答案和解析>>

已知点P(x,y)满足
x-4y+3≤0
3x+5y≤25
x-1≥0
,A(2,0)
,则|
OP
|sin∠AOP
(O为坐标原点)的最大值为(  )
A、
22
5
B、2
C、1
D、0

查看答案和解析>>

已知点P(xy)的坐标满足O为坐标原点,则|PO|的最小值为(  )

A.    B.    C.      D.

查看答案和解析>>

 

第I卷(选择题 共60分)

一、选择题(每小题5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非选择题 共90分)

二、填空题(每小题4分,共16分)

13.2  14.   15.  16.①③

三、解答题(本大题共6小题,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

      

      

              3分

18.(I)证明:由题意可知CD、CB、CE两两垂直。

       可建立如图所示的空间直角坐标系

       则       2分

       由  1分

      

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:设异面直线CM与FD所成角的大小为

      

      

      

       即异面直线CM与FD所成角的大小为   3分

   (III)解:平面ADF,

       平面ADF的法向量为      1分

       设平面BDF的法向量为

       由

            1分

      

          1分

       由图可知二面角A―DF―B的大小为   1分

19.解:(I)设该小组中有n个女生,根据题意,得

      

       解得n=6,n=4(舍去)

       该小组中有6个女生。        5分

   (II)由题意,的取值为0,1,2,3。      1分

      

      

      

             4分

       的分布列为:

0

1

2

3

P

       …………1分

        3分

20.解:(I)到渐近线=0的距离为,两条准线之间的距离为1,

               3分

            1分

   (II)由题意,知直线AB的斜率必存在。

       设直线AB的方程为

       由

       显然

      

             2分

       由双曲线和ABCD的对称性,可知A与C、B与D关于原点对称。

       而    1分

           

       点O到直线的距离   2分

      

      

      

               1分

21.解:(I)

      

              3分

   (Ⅱ)     1分

      

       上单调递增;

       又当

       上单调递减。      1分

       只能为的单调递减区间,

      

       的最小值为0。

   (III)

      

      

       于是函数是否存在极值点转化为对方程内根的讨论。

       而

            1分

       ①当

       此时有且只有一个实根

                           

       存在极小值点     1分

       ②当

       当单调递减;

       当单调递增。

             1分

       ③当

       此时有两个不等实根

      

       单调递增,

       单调递减,

       当单调递增,

      

       存在极小值点      1分

       综上所述,对时,

       存在极小值点

       当    

       当存在极小值点

       存在极大值点      1分

   (注:本小题可用二次方程根的分布求解。)

22.(I)解:由题意,      1分

             1

       为首项,为公比的等比数列。

                 1分

            1分

   (Ⅱ)证明:

      

      

       构造辅助函数

      

       单调递增,

      

       令

       则

      

               4分

   (III)证明:

      

      

      

       时,

      

      

       (当且仅当n=1时取等号)。      3分

       另一方面,当时,

      

      

      

      

      

      

       (当且仅当时取等号)。

       (当且仅当时取等号)。

       综上所述,有      3分