所以,函数在处取得极小值,在取得极大值,故,. 查看更多

 

题目列表(包括答案和解析)

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

已知函数f(x)的导函数f'(x)的图象如图所示,给出以下结论:
①函数f(x)在(-2,-1)和(1,2)是单调递增函数;
②函数f(x)在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数;
③函数f(x)在x=-1处取得极大值,在x=1处取得极小值;
④函数f(x)在x=0处取得极大值f(0).
则正确命题的序号是
②④
②④
.(填上所有正确命题的序号)

查看答案和解析>>

已知函数f(x)的导函数f'(x)的图象如图所示,给出以下结论:
①函数f(x)在(-2,-1)和(1,2)是单调递增函数;
②函数f(x)在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数;
③函数f(x)在x=-1处取得极大值,在x=1处取得极小值;
④函数f(x)在x=0处取得极大值f(0).
则正确命题的序号是______.(填上所有正确命题的序号)
精英家教网

查看答案和解析>>

已知函数f(x)的导函数f'(x)的图象如图所示,给出以下结论:
①函数f(x)在(-2,-1)和(1,2)是单调递增函数;
②函数f(x)在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数;
③函数f(x)在x=-1处取得极大值,在x=1处取得极小值;
④函数f(x)在x=0处取得极大值f(0).
则正确命题的序号是    .(填上所有正确命题的序号)

查看答案和解析>>

已知函数f(x)的导函数f'(x)的图象如图所示,给出以下结论:
①函数f(x)在(-2,-1)和(1,2)是单调递增函数;
②函数f(x)在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数;
③函数f(x)在x=-1处取得极大值,在x=1处取得极小值;
④函数f(x)在x=0处取得极大值f(0).
则正确命题的序号是________.(填上所有正确命题的序号)

查看答案和解析>>


同步练习册答案