题目列表(包括答案和解析)
把函数
的图象按向量
平移得到函数
的图象.
(1)求函数
的解析式; (2)若
,证明:
.
【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
,便可以得到结论。第二问中,令
,然后求导,利用最小值大于零得到。
(1)解:设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 证明:令
,……6分
则
……8分
,∴
,∴
在
上单调递增.……10分
故
,即![]()
商场销售某种商品的经验表明,该商品每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求
的值;
(2) 若商品的成品为3元/千克, 试确定销售价格
的值,使商场每日销售该商品所获得的利润最大
【解析】(1)利用销售价格为5元/千克时,每日可售出该商品11千克.把x=5,y=11代入
,解关于a的方程即可求a..
(2)在(1)的基础上,列出利润关于x的函数关系式,
利润=销售量
(销售单价-成品单价),然后利用导数求其最值即可.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com