C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

 

一、选择题

AACCD   BBDDD   AC

二、填空题

13.    14.6    15.①⑤    16.

三、解答题

17.解:(Ⅰ)因为

由正弦定理,得,              ……3分

整理,得

因为的三内角,所以,    

因此  .                                                 ……6分

20090520

由余弦定理,得,所以,      ……10分

解方程组,得 .                       ……12分

18.解:记 “过第一关”为事件A,“第一关第一次过关”为事件A1,“第一关第二次过关”为事件A2;“过第二关”为事件B, “第二关第一次过关”为事件B1,“第二关第二次过关”为事件B2

(Ⅰ)该同学获得900元奖金,即该同学顺利通过第一关,但未通过第二关,则所求概率为

.              ……………………………3分

(Ⅱ)该同学通过第一关的概率为:

, ……………………5分

该同学通过第一、二关的概率为:

         

,   ………………………7分

 ∴ 在该同学已顺利通过第一关的条件下,他获3600元奖金的概率是

.     ………………………………………………………8分

(Ⅲ)该同学获得奖金额可能取值为:0 元,900 元, 3600 元.………9分

 ,  ……………………………10分    

, 

,         

(另解:=1-

       ∴  . ……12分

19.(本题满分12分)

解: (Ⅰ)当中点时,有∥平面.…1分

证明:连结连结

∵四边形是矩形  ∴中点

∥平面

平面,平面

------------------4分

的中点.------------------5分

(Ⅱ)建立空间直角坐标系如图所示,

,,,

, ------------7分

所以

为平面的法向量,

则有,

,可得平面的一个

法向量为,              ----------------9分

而平面的法向量为,    ---------------------------10分

所以

所以二面角的余弦值为----------------------------12分

学科网(Zxxk.Com)20.(Ⅰ)设椭圆C的方程为

则由题意知

∴椭圆C的方程为      ……………………4分

(Ⅱ)假设右焦点可以为的垂心,

,∴直线的斜率为

从而直线的斜率为1.设其方程为, …………………………………5分

联立方程组

整理可得:   ……………6分.

       ,∴

,则

.……………7分

       于是

      

解之得.    ……………10分

时,点即为直线与椭圆的交点,不合题意;

时,经检验知和椭圆相交,符合题意.

所以,当且仅当直线的方程为时,

的垂心.…………12分  

21.解:(Ⅰ)的导数

,解得;令

解得.………………………2分

从而内单调递减,在内单调递增.

所以,当时,取得最小值.……………………………5分

(II)因为不等式的解集为P,且

所以,对任意的,不等式恒成立,……………………………6分

,得

时,上述不等式显然成立,故只需考虑的情况。………………7分

变形为  ………………………………………………8分

,则

       令,解得;令

解得.…………………………10分

       从而内单调递减,在内单调递增.

所以,当时,

取得最小值,从而,

所求实数的取值范围是.………………12分

22.解:(Ⅰ)当时,    

  (Ⅱ)在中,

  在中,

时,中第项是

中的第项是

所以中第项与中的第项相等.

时,中第项是

中的第项是

所以中第项与中的第项相等.

  ∴ 

(Ⅲ)

  

+

当且仅当,等号成立.

∴当时,最小.