(Ⅱ)若.且.求和的值. 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)已知圆O:x2+y2=4和点M(1,a),若实数a>0且过点M有且只有一 条直线与圆O相切,求实数a的值,并求出切线方程;
(Ⅱ)过点(
2
,0)引直线l与曲线y=
1-x2
相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,求直线l的方程.

查看答案和解析>>

(Ⅰ)已知圆O:x2+y2=4和点M(1,a),若实数a>0且过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程;
(Ⅱ)过点(
2
,0)引直线l与曲线y=
1-x2
相交于A,B两点,O为坐标原点,当△ABO的面积取得最大值时,求直线l的方程.

查看答案和解析>>

a11,a12,…a18
a21,a22,…a28

a81,a82,…a88
64个正数排成8行8列,如上所示:在符合aij(1≤i≤8,1≤j≤8)中,i表示该数所在的行数,j表示该数所在的列数.已知每一行中的数依次都成等差数列,而每一列中的数依次都成等比数列(每列公比q都相等)且a11=
1
2
,a24=1,a32=
1
4

(1)若a21=
1
4
,求a12和a13的值.
(2)记第n行各项之和为An(1≤n≤8),数列{an}、{bn}、{cn}满足an=
36
An
,联mbn+1=2(an+mbn)(m为非零常数),cn=
bn
an
,且c12+c72=100,求c1+c2+…c7的取值范围.
(3)对(2)中的an,记dn=
200
an
(n∈N)
,设Bn=d1•d2…dn(n∈N),求数列{Bn}中最大项的项数.

查看答案和解析>>

已知,且方程有两个不同的正根,其中一根是另一根的倍,记等差数列的前项和分别为)。

(1)若,求的最大值;

(2)若,数列的公差为3,试问在数列中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列的通项公式;若不存在,请说明理由.

(3)若,数列的公差为3,且.

试证明:.

 

查看答案和解析>>

已知,且方程有两个不同的正根,其中一根是另一根的倍,记等差数列的前项和分别为)。
(1)若,求的最大值;
(2)若,数列的公差为3,试问在数列中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列的通项公式;若不存在,请说明理由.
(3)若,数列的公差为3,且.
试证明:.

查看答案和解析>>

 

一、选择题

AACCD   BBDDD   AC

二、填空题

13.    14.6    15.①⑤    16.

三、解答题

17.解:(Ⅰ)因为

由正弦定理,得,              ……3分

整理,得

因为的三内角,所以,    

因此  .                                                 ……6分

20090520

由余弦定理,得,所以,      ……10分

解方程组,得 .                       ……12分

18.解:记 “过第一关”为事件A,“第一关第一次过关”为事件A1,“第一关第二次过关”为事件A2;“过第二关”为事件B, “第二关第一次过关”为事件B1,“第二关第二次过关”为事件B2

(Ⅰ)该同学获得900元奖金,即该同学顺利通过第一关,但未通过第二关,则所求概率为

.              ……………………………3分

(Ⅱ)该同学通过第一关的概率为:

, ……………………5分

该同学通过第一、二关的概率为:

         

,   ………………………7分

 ∴ 在该同学已顺利通过第一关的条件下,他获3600元奖金的概率是

.     ………………………………………………………8分

(Ⅲ)该同学获得奖金额可能取值为:0 元,900 元, 3600 元.………9分

 ,  ……………………………10分    

, 

,         

(另解:=1-

       ∴  . ……12分

19.(本题满分12分)

解: (Ⅰ)当中点时,有∥平面.…1分

证明:连结连结

∵四边形是矩形  ∴中点

∥平面

平面,平面

------------------4分

的中点.------------------5分

(Ⅱ)建立空间直角坐标系如图所示,

,,,

, ------------7分

所以

为平面的法向量,

则有,

,可得平面的一个

法向量为,              ----------------9分

而平面的法向量为,    ---------------------------10分

所以

所以二面角的余弦值为----------------------------12分

学科网(Zxxk.Com)20.(Ⅰ)设椭圆C的方程为

则由题意知

∴椭圆C的方程为      ……………………4分

(Ⅱ)假设右焦点可以为的垂心,

,∴直线的斜率为

从而直线的斜率为1.设其方程为, …………………………………5分

联立方程组

整理可得:   ……………6分.

       ,∴

,则

.……………7分

       于是

      

解之得.    ……………10分

时,点即为直线与椭圆的交点,不合题意;

时,经检验知和椭圆相交,符合题意.

所以,当且仅当直线的方程为时,

的垂心.…………12分  

21.解:(Ⅰ)的导数

,解得;令

解得.………………………2分

从而内单调递减,在内单调递增.

所以,当时,取得最小值.……………………………5分

(II)因为不等式的解集为P,且

所以,对任意的,不等式恒成立,……………………………6分

,得

时,上述不等式显然成立,故只需考虑的情况。………………7分

变形为  ………………………………………………8分

,则

       令,解得;令

解得.…………………………10分

       从而内单调递减,在内单调递增.

所以,当时,

取得最小值,从而,

所求实数的取值范围是.………………12分

22.解:(Ⅰ)当时,    

  (Ⅱ)在中,

  在中,

时,中第项是

中的第项是

所以中第项与中的第项相等.

时,中第项是

中的第项是

所以中第项与中的第项相等.

  ∴ 

(Ⅲ)

  

+

当且仅当,等号成立.

∴当时,最小.