(Ⅲ)求该同学获得奖金额的数学期望E. 查看更多

 

题目列表(包括答案和解析)

某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:
奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.
(1)求1名顾客摸球2次摸奖停止的概率;
(2)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.

查看答案和解析>>

某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:
奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.
(1)求1名顾客摸球2次摸奖停止的概率;
(2)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.

查看答案和解析>>

(本小题满分13分)

某品牌专卖店准备在春节期间举行促销活动,根据市场调查,该店决定从种型号的洗衣机,种型号的电视机和种型号的电脑中,选出种型号的商品进行促销.

(Ⅰ)试求选出的种型号的商品中至少有一种是电脑的概率;

(Ⅱ)该店对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高元,同时,若顾客购买该商品,则允许有次抽奖的机会,若中奖,则每次中奖都获得元奖金.假设顾客每次抽奖时获奖与否的概率都是,设顾客在三次抽奖中所获得的奖金总额(单位:元)为随机变量,请写出的分布列,并求的数学期望;

(Ⅲ)在(Ⅱ)的条件下,问该店若想采用此促销方案获利,则每次中奖奖金要低于多少元?

查看答案和解析>>

某超市在节日期间进行有奖促销,凡在该超市购物满200元的顾客,将获得一次摸奖机会,规则如下:
奖盒中放有除颜色外完全相同的1个红色球,1个黄色球,1个蓝色球和1个黑色球.顾客不放回的每次摸出1个球,直至摸到黑色球停止摸奖.规定摸到红色球奖励10元,摸到黄色球或蓝色球奖励5元,摸到黑色球无奖励.
(1)求一名顾客摸球3次停止摸奖的概率;
(2)记X为一名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.

查看答案和解析>>

某超市在节日期间进行有奖促销,凡在该超市购物满400元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就继续摸球.规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.
(1)求1名顾客摸球2次停止摸奖的概率;
(2)记为1名顾客摸奖获得的奖金数额,求随机变量的分布律和数学期望.

查看答案和解析>>

 

一、选择题

AACCD   BBDDD   AC

二、填空题

13.    14.6    15.①⑤    16.

三、解答题

17.解:(Ⅰ)因为

由正弦定理,得,              ……3分

整理,得

因为的三内角,所以,    

因此  .                                                 ……6分

20090520

由余弦定理,得,所以,      ……10分

解方程组,得 .                       ……12分

18.解:记 “过第一关”为事件A,“第一关第一次过关”为事件A1,“第一关第二次过关”为事件A2;“过第二关”为事件B, “第二关第一次过关”为事件B1,“第二关第二次过关”为事件B2

(Ⅰ)该同学获得900元奖金,即该同学顺利通过第一关,但未通过第二关,则所求概率为

.              ……………………………3分

(Ⅱ)该同学通过第一关的概率为:

, ……………………5分

该同学通过第一、二关的概率为:

         

,   ………………………7分

 ∴ 在该同学已顺利通过第一关的条件下,他获3600元奖金的概率是

.     ………………………………………………………8分

(Ⅲ)该同学获得奖金额可能取值为:0 元,900 元, 3600 元.………9分

 ,  ……………………………10分    

, 

,         

(另解:=1-

       ∴  . ……12分

19.(本题满分12分)

解: (Ⅰ)当中点时,有∥平面.…1分

证明:连结连结

∵四边形是矩形  ∴中点

∥平面

平面,平面

------------------4分

的中点.------------------5分

(Ⅱ)建立空间直角坐标系如图所示,

,,,

, ------------7分

所以

为平面的法向量,

则有,

,可得平面的一个

法向量为,              ----------------9分

而平面的法向量为,    ---------------------------10分

所以

所以二面角的余弦值为----------------------------12分

学科网(Zxxk.Com)20.(Ⅰ)设椭圆C的方程为

则由题意知

∴椭圆C的方程为      ……………………4分

(Ⅱ)假设右焦点可以为的垂心,

,∴直线的斜率为

从而直线的斜率为1.设其方程为, …………………………………5分

联立方程组

整理可得:   ……………6分.

       ,∴

,则

.……………7分

       于是

      

解之得.    ……………10分

时,点即为直线与椭圆的交点,不合题意;

时,经检验知和椭圆相交,符合题意.

所以,当且仅当直线的方程为时,

的垂心.…………12分  

21.解:(Ⅰ)的导数

,解得;令

解得.………………………2分

从而内单调递减,在内单调递增.

所以,当时,取得最小值.……………………………5分

(II)因为不等式的解集为P,且

所以,对任意的,不等式恒成立,……………………………6分

,得

时,上述不等式显然成立,故只需考虑的情况。………………7分

变形为  ………………………………………………8分

,则

       令,解得;令

解得.…………………………10分

       从而内单调递减,在内单调递增.

所以,当时,

取得最小值,从而,

所求实数的取值范围是.………………12分

22.解:(Ⅰ)当时,    

  (Ⅱ)在中,

  在中,

时,中第项是

中的第项是

所以中第项与中的第项相等.

时,中第项是

中的第项是

所以中第项与中的第项相等.

  ∴ 

(Ⅲ)

  

+

当且仅当,等号成立.

∴当时,最小.