(1)若函数的图象上任意不同的两点的连线的斜率小于1.求证: 查看更多

 

题目列表(包括答案和解析)

已知点是函数的图象上任意不同两点,依据图象可知,段段AB总是位于A,B两点之间函数图象的下方,因此有结论成立。运用类比思想方法可知,若点是函数的图象上的不同两点,则类似地有成立   

 

查看答案和解析>>

已知点是函数的图象上任意不同两点,依据图象可知,段段AB总是位于A,B两点之间函数图象的下方,因此有结论成立。运用类比思想方法可知,若点是函数的图象上的不同两点,则类似地有成立   

查看答案和解析>>

已知点是函数的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论成立.运用类比思想方法可知,若点图象上的不同两点,则类似地有________________成立.

查看答案和解析>>

函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象有两个不同的公共点,则实数a的值为(  )
A.n(n∈Z)B.2n(n∈Z)
C.2n或2n-
1
4
(n∈Z)
D.n或n-
1
4
(n∈Z)

查看答案和解析>>

函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象有两个不同的公共点,则实数a的值为( )
A.n(n∈Z)
B.2n(n∈Z)
C.2n或(n∈Z)
D.n或(n∈Z)

查看答案和解析>>

一、选择题

1.D   2.A   3.A   4.C    5.D   6.D   7.B   8.A

二、填空题

9.    10.    11.40;    12.7    13.3    14.①②③④

三、解答题

15.解:(1)设数列

由题意得:

解得:

   (2)依题

为首项为2,公比为4的等比数列

   (2)由

 

16.解:(1)

   (2)由

17.解法1:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时。

依题意,设与速度有关的每小时燃料费用为

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

解法2:

设轮船的速度为x千米/小时(x>0),

则航行1公里的时间为小时,

依题意,设与速度有关的每小时燃料费用为

元,

且当时等号成立。

答:轮船的速度应定为每小时20公里,行驶1公里所需的费用总和最小。

 

18.解:(1),半径为1依题设直线

    由圆C与l相切得:

   (2)设线段AB中点为

    代入即为所求的轨迹方程。

   (3)

   

 

   

    ∴异面直线CD与AP所成的角为60°

   (2)连结AC交BD于G,连结EG,

   

   (3)设平面,由

   

20.解:(1)设函数

    不妨设

   

   (2)时,