题目列表(包括答案和解析)
如图,已知椭圆
的长轴为AB,过点B的直线
与![]()
轴垂直,椭圆的离心率
,F为椭圆的左焦点,且![]()
![]()
(1)求此椭圆的标准方程;
(2)设P是此椭圆上异于A,B的任意一点,
轴,H为垂足,延长HP到点Q,使得HP=PQ,连接AQ并延长交直线
于点
,
为
的中点,判定直线
与以
为直径的圆O位置关系。
(本题满分12分)
如图,已知椭圆
的长轴为
,过点
的直线
与
轴垂直,直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率![]()
(1)求椭圆的标准方程;
(2)设
是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连接
并延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系.
![]()
(本小题12分)如图,已知椭圆![]()
的长轴为
,过点
的直线
与
轴垂直.直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率
。
(1)求椭圆的标准方程;
(2)设
是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连结
延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系。
![]()
(本小题满分12分)如图,已知椭圆
的长轴为
,过点
的直线
与
轴垂直,直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率![]()
![]()
(1)求椭圆的标准方程;
(2)设
是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连接
并延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系.
(本题满分12分)
如图,已知椭圆
的长轴为
,过点
的直线
与
轴垂直,直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率![]()
![]()
(1)求椭圆的标准方程;
(2)设
是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连接
并延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com