C.求数列的前11项和 查看更多

 

题目列表(包括答案和解析)

数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)求证:数列{an}为等差数列的充要条件是3A-B+C=0;
(2)若C=0,{an}是首项为1的等差数列,设P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超过P的最大整数的值.

查看答案和解析>>

(2012•江苏三模)数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若数列{an}为等差数列,求证:3A-B+C=0;
(2)若A=-
1
2
,B=-
3
2
,C=1
,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn
(3)若C=0,{an}是首项为1的等差数列,设P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超过P的最大整数的值.

查看答案和解析>>

(2013•汕头一模)数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若A=-
1
2
,B=-
3
2
,C=1,设bn=an+n,求证:数列{bn}是等比数列;
(2)在(1)的条件下,cn=(2n+1)bn,数列{cn}的前n项和为Tn,证明:Tn<5;
(3)若C=0,{an}是首项为1的等差数列,若λ+n≤
n
i=1
1+
2
a
2
i
+
1
a
2
i+1
对任意的正整数n都成立,求实数λ的取值范围(注:
n
i=1
xi
=x1+x2+…+xn

查看答案和解析>>

,利用课本中推导等差数列前项和公式的方法,可求得f(-12)+f(-11)+f(-10)+…+f(0)+…+f(12)+f(13)的值是

[  ]

A.

B.

C.

D.

查看答案和解析>>

,利用课本中推导等差数列前n项和公式的方法,可求得f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值为( )
A.
B.
C.
D.

查看答案和解析>>

一、选择题

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

13.    14.2      15. 

16.

三、解答题

17.(本小题满分12分)

       解证:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                                                 …………10分

                                                                                      

即函数的值域是                                                            …………12分

18.(本小题满分12分)

       解:(I)依题意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

                …………9分

                                       …………12分

19.(本小题满分12分)

     (I)证明:依题意知:

     …4分

   (II)由(I)知平面ABCD

       ∴平面PAB⊥平面ABCD.                        …………4分

     在PB上取一点M,作MNAB,则MN⊥平面ABCD

       设MN=h

       则

                            …………6分

       要使

       即MPB的中点.                                                                  …………8分

   (Ⅲ)连接BD交AC于O,因为AB//CD,AB=2,CD=1,由相似三角形易得BO=2OD

∴O不是BD的中心……………………10分

又∵M为PB的中点

∴在△PBD中,OM与PD不平行

∴OM所以直线与PD所在直线相交

又OM平面AMC

∴直线PD与平面AMC不平行.……………………12分

20.(本小题满分12分)

       解:由图可知M(60,98),N(500,230),C(500,168),MN//CD.

设这两种方案的应付话费与通话时间的函数关系分别为

………………2分

……………………4分

   (Ⅰ)通话2小时,两种方案的话费分别为116元、168元.………………6分

   (Ⅱ)因为

故方案B从500分钟以后,每分钟收费0.3元.………………8分

(每分钟收费即为CD的斜率)

   (Ⅲ)由图可知,当

……………………11分

综上,当通话时间在()时,方案B较方案A优惠.………………12分

21.(本小题满分12分)

解:(Ⅰ)设的夹角为,则的夹角为

……………………2分

………………4分

(II)设

                                             …………5分

      

       由                            …………6分

                            …………7分

       上是增函数

       上为增函数

       m=2时,的最小值为         …………10分

       此时P(2,0),椭圆的另一焦点为,则椭圆长轴长

      

          …………12分

22.(本小题满分14分)

       解:(I)                           …………2分

       由                                                           …………4分

      

       当的单调增区间是,单调减区间是

                                                                                     …………6分

       当的单调增区间是,单调减区间是

                                                                                      …………8分

   (II)当上单调递增,因此

      

                                                                                                      …………10分

       上递减,所以值域是   

                                                                             …………12分

       因为在

                                                                                                             …………13分

       使得成立.

                                                                                                             …………14分